Cockayne syndrome is a neurodegenerative accelerated aging disorder caused by mutations in the CSA or CSB genes. Although the pathogenesis of Cockayne syndrome has remained elusive, recent work implicates mitochondrial dysfunction in the disease progression. Here, we present evidence that loss of CSA or CSB in a neuroblastoma cell line converges on mitochondrial dysfunction caused by defects in ribosomal DNA transcription and activation of the DNA damage sensor poly-ADP ribose polymerase 1 (PARP1). Indeed, inhibition of ribosomal DNA transcription leads to mitochondrial dysfunction in a number of cell lines. Furthermore, machine-learning algorithms predict that diseases with defects in ribosomal DNA (rDNA) transcription have mitochondrial dysfunction, and, accordingly, this is found when factors involved in rDNA transcription are knocked down. Mechanistically, loss of CSA or CSB leads to polymerase stalling at non-B DNA in a neuroblastoma cell line, in particular at G-quadruplex structures, and recombinant CSB can melt G-quadruplex structures. Indeed, stabilization of G-quadruplex structures activates PARP1 and leads to accelerated aging in Caenorhabditis elegans In conclusion, this work supports a role for impaired ribosomal DNA transcription in Cockayne syndrome and suggests that transcription-coupled resolution of secondary structures may be a mechanism to repress spurious activation of a DNA damage response.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5098674 | PMC |
http://dx.doi.org/10.1073/pnas.1610198113 | DOI Listing |
Keio J Med
December 2024
Department of Dermatology, Graduate School of Medicine, Osaka Metropolitan University, Osaka, Japan.
The Hashimoto Research Group for Comprehensive Research of Gene Mutation-related Rare and Intractable Diseases of the Skin is a contributor to the Project for Research on Intractable Diseases of the Ministry of Health, Labor, and Welfare (MHLW) of Japan. Our research group performs clinical research on 23 rare intractable genetic skin diseases that are classified into eight disease groups. Among the 23 diseases, 17 are mainly studied by our research group, and 6 diseases are studied in collaboration with other research groups.
View Article and Find Full Text PDFFEBS Lett
December 2024
Department of Genetics, Research Institute of Environmental Medicine (RIeM), Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8601, Japan.
The transcription-coupled repair (TCR) pathway resolves transcription-blocking DNA lesions to maintain cellular function and prevent transcriptional arrest. Stalled RNA polymerase II (RNAPII) triggers repair mechanisms, including RNAPII ubiquitination, which recruit UVSSA and TFIIH. Defects in TCR-associated genes cause disorders like Cockayne syndrome, UV-sensitive syndrome, xeroderma pigmentosum, and recently defined AMeDS.
View Article and Find Full Text PDFNat Commun
December 2024
Institute of Human Genetics, University Hospital, Friedrich-Schiller-Universität Jena, 07740, Jena, Germany.
Brain organoids offer unprecedented insights into brain development and disease modeling and hold promise for drug screening. Significant hindrances, however, are morphological and cellular heterogeneity, inter-organoid size differences, cellular stress, and poor reproducibility. Here, we describe a method that reproducibly generates thousands of organoids across multiple hiPSC lines.
View Article and Find Full Text PDFAging Cell
December 2024
Laboratory of Cell Proliferation and Ageing, Institute of Biosciences and Applications, National Centre for Scientific Research "Demokritos", Athens, Greece.
Ultraviolet B (UVB) radiation is a major contributor to skin photoaging. Although mainly absorbed by the epidermis, UVB photons managing to penetrate the upper dermis affect human dermal fibroblasts (HDFs), leading, among others, to the accumulation of senescent cells. In vitro studies have shown that repeated exposures to subcytotoxic UVB radiation doses provoke HDFs' premature senescence shortly after the end of the treatment period.
View Article and Find Full Text PDFMol Genet Genomic Med
December 2024
Department of Biochemistry, Hamamatsu University School of Medicine, Hamamatsu, Japan.
Background: Uniparental isodisomy (UPiD) refers to a condition, in which both homologous chromosomes are inherited from only one parental homolog, which can result in either imprinting disorders or autosomal recessive conditions.
Methods: We performed chromosomal microarray analysis, exome sequencing (ES), and RNA sequencing (RNA-seq) using the patient's urine-derived cells on a patient with growth retardation and multiple congenital anomalies.
Results: We identified a homozygous ~0.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!