Anaerobic oxidation of methane (AOM) is crucial for controlling the emission of this potent greenhouse gas to the atmosphere. Nitrite-, nitrate-, and sulfate-dependent methane oxidation is well-documented, but AOM coupled to the reduction of oxidized metals has so far been demonstrated only in environmental samples. Here, using a freshwater enrichment culture, we show that archaea of the order , related to " Methanoperedens nitroreducens," couple the reduction of environmentally relevant forms of Fe and Mn to the oxidation of methane. We obtained an enrichment culture of these archaea under anaerobic, nitrate-reducing conditions with a continuous supply of methane. Via batch incubations using [C]methane, we demonstrated that soluble ferric iron (Fe, as Fe-citrate) and nanoparticulate forms of Fe and Mn supported methane-oxidizing activity. CO and ferrous iron (Fe) were produced in stoichiometric amounts. Our study connects the previous finding of iron-dependent AOM to microorganisms detected in numerous habitats worldwide. Consequently, it enables a better understanding of the interaction between the biogeochemical cycles of iron and methane.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5111651 | PMC |
http://dx.doi.org/10.1073/pnas.1609534113 | DOI Listing |
Bioresour Technol
January 2025
Instituto de Ingeniería, Universidad Nacional Autónoma de México, Circuito Escolar, Ciudad Universitaria, C.P. 04510 Ciudad de México, México. Electronic address:
Biological methane oxidation can sustain high temperatures in organic matrices, such as landfill covers and compost biofilters. This study investigates the temperature dynamics, methane removal efficiency, and microbial community responses in a pilot scale compost biofilter under three methane concentrations (2, 4, and 8 % v v in air) with a 23-minute empty bed residence time. Complete methane removal was achieved at 2 %, with compost bed temperatures reaching 51 °C.
View Article and Find Full Text PDFDalton Trans
January 2025
Department of Computational Chemistry, Lund University, Chemical Centre, P. O. Box 124, SE-221 00 Lund, Sweden.
Particulate methane monooxygenase (pMMO) is the most efficient of the two groups of enzymes that can hydroxylate methane. The enzyme is membrane bound and therefore hard to study experimentally. For that reason, there is still no consensus regarding the location and nature of the active site.
View Article and Find Full Text PDFAdv Sci (Weinh)
January 2025
Department of Chemistry, Stanford University, 380 Roth Way, Stanford, CA, 94305, USA.
Partial oxidation of methane (POM) is achieved by forming air-methane microbubbles in saltwater to which an alternating electric field is applied using a copper oxide foam electrode. The solubility of methane is increased by putting it in contact with water containing dissolved KCl or NaCl (3%). Being fully dispersed as microbubbles (20-40 µm in diameter), methane reacts more fully with hydroxyl radicals (OH·) at the gas-water interface.
View Article and Find Full Text PDFSci Rep
January 2025
Florida State University, Tallahassee, FL, 32306-2400, USA.
Sphagnum-dominated bogs are climatically impactful systems that exhibit two puzzling characteristics: CO:CH ratios are greater than those predicted by electron balance models and C decomposition rates are enigmatically slow. We hypothesized that Maillard reactions partially explain both phenomena by increasing apparent CO production via eliminative decarboxylation and sequestering bioavailable nitrogen (N). We tested this hypothesis using incubations of sterilized Maillard reactants, and live and sterilized bog peat.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
January 2025
University of Michigan, Department of Electrical Engineering and Computer Science, UNITED STATES OF AMERICA.
The photocatalytic nonoxidative coupling of methane (PNOCM) offers a promising route to synthesize valuable C2+ hydrocarbons while minimizing side reactions. Oxide-based photocatalysts have been predominant in this field, but suffering from limited conversion rates, selectivity, and durability due to poor C-C coupling as well as overoxidation of CH4 by lattice oxygen. Here, we introduce an advancement in PNOCM for methane conversion into ethane and propane using GaN, one of the most produced semiconductors, together with trace amounts of metallic cobalt clusters (0.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!