Controlling uncertainty in aptamer selection.

Proc Natl Acad Sci U S A

Department of Biomedical Engineering, Boston University, Boston MA 02215; Howard Hughes Medical Institute, Boston University, Boston, MA 02215

Published: October 2016

The search for high-affinity aptamers for targets such as proteins, small molecules, or cancer cells remains a formidable endeavor. Systematic Evolution of Ligands by EXponential Enrichment (SELEX) offers an iterative process to discover these aptamers through evolutionary selection of high-affinity candidates from a highly diverse random pool. This randomness dictates an unknown population distribution of fitness parameters, encoded by the binding affinities, toward SELEX targets. Adding to this uncertainty, repeating SELEX under identical conditions may lead to variable outcomes. These uncertainties pose a challenge when tuning selection pressures to isolate high-affinity ligands. Here, we present a stochastic hybrid model that describes the evolutionary selection of aptamers to explore the impact of these unknowns. To our surprise, we find that even single copies of high-affinity ligands in a pool of billions can strongly influence population dynamics, yet their survival is highly dependent on chance. We perform Monte Carlo simulations to explore the impact of environmental parameters, such as the target concentration, on selection efficiency in SELEX and identify strategies to control these uncertainties to ultimately improve the outcome and speed of this time- and resource-intensive process.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5087011PMC
http://dx.doi.org/10.1073/pnas.1605086113DOI Listing

Publication Analysis

Top Keywords

evolutionary selection
8
high-affinity ligands
8
explore impact
8
selection
5
controlling uncertainty
4
uncertainty aptamer
4
aptamer selection
4
selection search
4
high-affinity
4
search high-affinity
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!