The effect of interrupted defocus on blur adaptation.

Ophthalmic Physiol Opt

School of Optometry and Vision Science, University of Bradford, Bradford, UK.

Published: November 2016

Purpose: Blur adaptation occurs when an observer is exposed to continuous defocus. However, it is unclear whether adaptation requires constant defocus, or whether the effect can still be achieved when the adaptation period is interrupted by short periods of clear vision.

Methods: The study included 12 emmetropes and 12 myopes. All observers wore full refractive correction throughout the experiment. 1D and 3D of myopic defocus was introduced using spherical convex lenses. An automated system was used to place the blurring lens before the RE for varying periods of blurred and clear vision during adaptation. Participants watched a DVD at 3 m during each 15 min trial. Visual acuity was measured using Test Chart 2000 before and after adaptation.

Results: Blur adaptation occurs to varying degrees depending on the periods of incremental blur exposure. Significant improvements in defocused visual acuity occur with continuous blur, equal blur and clear periods, as well as for longer blur periods. However, longer clear periods showed reduced adaptation and this trial is significantly different to the other three trials for both defocus levels (p < 0.001). No refractive group differences were observed for neither 1D nor 3D defocus (p = 0.58 and p = 0.19 respectively).

Conclusions: Intervening periods of clear vision cause minimal disruption to improvements in defocused visual acuity after adaptation, indicating that blur adaptation is a robust phenomenon. However, when the exposure to clear vision exceeds the defocused periods, adaptation is inhibited. This gives insight into the effects of real-world tasks on adaptation to blur.

Download full-text PDF

Source
http://dx.doi.org/10.1111/opo.12323DOI Listing

Publication Analysis

Top Keywords

blur adaptation
12
adaptation occurs
8
visual acuity
8
clear periods
8
blur
7
adaptation
7
periods
6
interrupted defocus
4
defocus blur
4
adaptation purpose
4

Similar Publications

It is essential in combat sports such as boxing for athletes to perceive the relevant visual information that enables them to anticipate and respond to their opponent's attacking and defensive moves. Here, we used virtual reality (VR), which enables standardization and reproducibility while maintaining perception-action coupling, to assess the influence of a gaze-contingent blur on the visual processes that underpin these boxing behaviours. Eleven elite French boxers were placed in an immersive and adaptive first-person VR environment where they had to avoid by dodging one or two punches, and then counterattack to strike their opponent.

View Article and Find Full Text PDF

Current deep learning-based phase unwrapping techniques for iToF Lidar sensors focus mainly on static indoor scenarios, ignoring motion blur in dynamic outdoor scenarios. Our paper proposes a two-stage semi-supervised method to unwrap ambiguous depth maps affected by motion blur in dynamic outdoor scenes. The method trains on static datasets to learn unwrapped depth map prediction and then adapts to dynamic datasets using continuous learning methods.

View Article and Find Full Text PDF

IMU-aided adaptive mesh-grid based video motion deblurring.

PeerJ Comput Sci

November 2024

Electrical and Electronics Engineering, Middle East Technical University, Ankara, Turkey.

Motion blur is a problem that degrades the visual quality of images for human perception and also challenges computer vision tasks. While existing studies mostly focus on deblurring algorithms to remove uniform blur due to their computational efficiency, such approaches fail when faced with non-uniform blur. In this study, we propose a novel algorithm for motion deblurring that utilizes an adaptive mesh-grid approach to manage non-uniform motion blur with a focus on reducing the computational cost.

View Article and Find Full Text PDF

Underwater images can suffer from visibility and quality degradation due to the attenuation of propagated light and other factors unique to the underwater setting. While Retinex-based approaches have shown to be effective in enhancing the underwater image quality, the use of hand-crafted priors and optimization-driven solutions often prevent the adaptivity of these methods to different types of underwater images. Moreover, the commonly-used white balance strategy which often appears in the preprocessing stage of the underwater image enhancement (UIE) algorithms may give rise to unwanted color distortions due to the fact that wavelength-dependent light absorption is not taken into account.

View Article and Find Full Text PDF

We investigated how long-term visual experience with habitual spherical aberration (SA) influences subjective depth of focus (DoF). Nine healthy cycloplegic eyes with habitual SAs of different signs and magnitudes were enrolled. An adaptive optics (AO) visual simulator was used to measure through-focus high-contrast visual acuity after correcting all monochromatic aberrations and imposing + 0.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!