In this work, we propose a stacked switching vector-autoregressive (SVAR)-CNN architecture to model the changing dynamics in physiological time series for patient prognosis. The SVAR-layer extracts dynamical features (or modes) from the time-series, which are then fed into the CNN-layer to extract higher-level features representative of transition patterns among the dynamical modes. We evaluate our approach using 8-hours of minute-by-minute mean arterial blood pressure (BP) from over 450 patients in the MIMIC-II database. We modeled the time-series using a third-order SVAR process with 20 modes, resulting in first-level dynamical features of size 20×480 per patient. A fully connected CNN is then used to learn hierarchical features from these inputs, and to predict hospital mortality. The combined CNN/SVAR approach using BP time-series achieved a median and interquartile-range AUC of 0.74 [0.69, 0.75], significantly outperforming CNN-alone (0.54 [0.46, 0.59]), and SVAR-alone with logistic regression (0.69 [0.65, 0.72]). Our results indicate that including an SVAR layer improves the ability of CNNs to classify nonlinear and nonstationary time-series.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5079526 | PMC |
http://dx.doi.org/10.1109/CIC.2015.7411099 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!