Sketching is one of the most important processes in the conceptual stage of design. Previous studies have relied largely on the analyses of sketching process and outcomes; whereas surface electromyographic (sEMG) signals associated with sketching have received little attention. In this study, we propose a method in which 11 basic one-stroke sketching shapes are identified from the sEMG signals generated by the forearm and upper arm muscles from 4 subjects. Time domain features such as integrated electromyography, root mean square and mean absolute value were extracted with analysis windows of two length conditions for pattern recognition. After reducing data dimensionality using principal component analysis, the shapes were classified using Gene Expression Programming (GEP). The performance of the GEP classifier was compared to the Back Propagation neural network (BPNN) and the Elman neural network (ENN). Feature extraction with the short analysis window (250 ms with a 250 ms increment) improved the recognition rate by around 6.4% averagely compared with the long analysis window (2500 ms with a 2500 ms increment). The average recognition rate for the eleven basic one-stroke sketching patterns achieved by the GEP classifier was 96.26% in the training set and 95.62% in the test set, which was superior to the performance of the BPNN and ENN classifiers. The results show that the GEP classifier is able to perform well with either length of the analysis window. Thus, the proposed GEP model show promise for recognizing sketching based on sEMG signals.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5064664PMC
http://dx.doi.org/10.3389/fnins.2016.00445DOI Listing

Publication Analysis

Top Keywords

semg signals
12
gep classifier
12
analysis window
12
analysis windows
8
gene expression
8
expression programming
8
basic one-stroke
8
one-stroke sketching
8
neural network
8
recognition rate
8

Similar Publications

Effectiveness of Using a Digital Wearable Plantar Pressure Device to Detect Muscle Fatigue: Within-Subject, Repeated Measures Experimental Design.

JMIR Hum Factors

January 2025

Department of Biomedical Engineering, Chung Yuan Christian University, No. 200, Zhongbei Road, Zhongli District, Toayuan City, 32023, Taiwan, 886 32564507.

Background: Muscle fatigue, characterized by reduced force generation during repetitive contractions, impacts older adults doing daily activities and athletes during sports activities. While various sensors detect muscle fatigue via muscle activity, biochemical markers, and kinematic parameters, a real-time wearable solution with high usability remains limited. Plantar pressure monitoring detects muscle fatigue through foot loading changes, seamlessly integrating into footwear to improve the usability and compliance for home-based monitoring.

View Article and Find Full Text PDF

This study examined the effects of core and muscle temperature on force steadiness and motor unit discharge rate (MUDR) variability after a hot-water immersion session. Fifteen participants (6 women; 25±6 years) completed neuromuscular assessments before and after either 42ºC (hot) or 36ºC (control) water immersion. Force steadiness was measured during knee extension, while HD-sEMG signals were recorded from vastus lateralis and medialis for MUDR variability analysis.

View Article and Find Full Text PDF

Two-dimensional identification of lower limb gait features based on the variational modal decomposition of sEMG signal and convolutional neural network.

Gait Posture

December 2024

Engineering Research Center of the Ministry of Education for Intelligent Rehabilitation Equipment and Detection Technologies, Hebei University of Technology, Tianjin 300401, PR China; Hebei Key Laboratory of Robot Sensing and Human-robot Interaction, Hebei University of Technology, Tianjin 300401, PR China; School of Mechanical Engineering, Hebei University of Technology, Tianjin 300401, PR China. Electronic address:

Background: Gait feature recognition is crucial to improve the efficiency and coordination of exoskeleton assistance. The recognition methods based on surface electromyographic (sEMG) signals are popular. However, the recognition accuracy of these methods is poor due to ignoring the correlation of the time series of sEMG signals.

View Article and Find Full Text PDF

Exploring pattern-specific components associated with hand gestures through different sEMG measures.

J Neuroeng Rehabil

December 2024

School of Information Science and Technology, Fudan University, Shanghai, 200433, China.

For surface electromyography (sEMG) based human-machine interaction systems, accurately recognizing the users' gesture intent is crucial. However, due to the existence of subject-specific components in sEMG signals, subject-specific models may deteriorate when applied to new users. In this study, we hypothesize that in addition to subject-specific components, sEMG signals also contain pattern-specific components, which is independent of individuals and solely related to gesture patterns.

View Article and Find Full Text PDF

Background: Simultaneous and proportional control (SPC) based on surface electromyographic (sEMG) signals has emerged as a research hotspot in the field of human-machine interaction (HMI). However, the existing continuous motion estimation methods mostly have an average Pearson coefficient (CC) of less than 0.85, while high-precision methods suffer from the problem of long inference time (> 200 ms) and can only estimate SPC of less than 15 hand movements, which limits their applications in HMI.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!