as Bioindicator of Fungal VOCs in Indoor Air.

Mycobiology

Department of Plant Biology and Pathology, Rutgers, The State University of New Jersey, New Brunswick, NJ 08901, USA.

Published: September 2016

In this paper, we demonstrate the ability of to detect different mixtures of volatile organic compounds (VOCs) emitted by the common indoor fungus, , and demonstrate the potential usage of the plant as a bioindicator to monitor fungal VOCs in indoor air. We evaluated the volatile production of strains SRRC 108 (NRRL 3449) and SRRC 2559 (ATCC 32662) grown on nutrient rich fungal medium, and grown under conditions to mimic the substrate encountered in the built environment where fungi would typically grow indoors (moist wallboard and ceiling tiles). Using headspace solid phase microextraction/gas chromatography-mass spectrometry, we analyzed VOC profiles of the two strains. The most abundant compound produced by both strains on all three media was 1-octen-3-ol. Strain SRRC 2559 made several terpenes not detected from strain SRRC 108. Using a split-plate bioassay, we grew in a shared atmosphere with VOCs from the two strains of grown on yeast extract sucrose medium. The VOCs emitted by SRRC 2559 had an adverse impact on seed germination and plant growth. Chemical standards of individual VOCs from the mixture (2-methyl-1-butanol, 3-methyl-1-butanol, 1-octen-3-ol, limonene, and β-farnesene), and β-caryophyllene were tested one by one in seed germination and vegetative plant growth assays. The most inhibitory compound to both seed germination and plant growth was 1-octen-3-ol. Our data suggest that is a useful model for monitoring indoor air quality as it is sensitive to naturally emitted fungal volatile mixtures as well as to chemical standards of individual compounds, and it exhibits relatively quick concentration- and duration-dependent responses.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5078129PMC
http://dx.doi.org/10.5941/MYCO.2016.44.3.162DOI Listing

Publication Analysis

Top Keywords

indoor air
12
srrc 2559
12
seed germination
12
plant growth
12
fungal vocs
8
vocs indoor
8
vocs emitted
8
srrc 108
8
strain srrc
8
germination plant
8

Similar Publications

Indoor dust can adsorb various pollutants and long-term deposition can significantly impact air quality and human health. This study investigated the occurrence, source apportionment, and health risks associated with polycyclic aromatic hydrocarbons (PAHs) and their derivatives (d-PAHs) in indoor dust, by focusing on residential and public buildings in Nanjing, China. The concentration of 16 PAHs and 27 d-PAHs ranged from 511 to 5472 ng/g and from 422 to 2904 ng/g, with the most abundant compounds being fluoranthene and 1,2-benz[a]anthraquinone, respectively.

View Article and Find Full Text PDF

Background: Chronic respiratory diseases are important causes of disability and mortality globally. Their incidence may be higher in remote locations where healthcare is limited and risk factors, such as smoking and indoor air pollution, are more prevalent. E-health could overcome some healthcare access obstacles in remote locations, but its utilisation has been limited.

View Article and Find Full Text PDF

Association between solid cooking fuels exposure and metabolic syndrome: Evidence from China.

Ecotoxicol Environ Saf

January 2025

Department of Gastrointestinal Surgery, Affiliated Changzhou No.2 People's Hospital of Nanjing Medical University, The Third Affiliated Hospital of Nanjing Medical University, Changzhou Medical Center, Nanjing Medical University, Changzhou 213100, China. Electronic address:

Epidemiological evidence connecting cooking fuel use to metabolic syndrome (MetS) is lacking. Solid cooking fuel usage and MetS prevalence were prospectively investigated in this study. We included participants in 2011 and 2015 from the China Health and Retirement Longitudinal Study (CHARLS) data.

View Article and Find Full Text PDF

A molecular toxicological study to explore potential health risks associated with ultrafine particle exposure in cold and humid indoor environments.

Ecotoxicol Environ Saf

January 2025

Joint International Research Laboratory of Green Buildings and Built Environments (Ministry of Education), Chongqing University, Chongqing 400045, China; School of the Built Environment, University of Reading, Reading RG6 6DB, UK. Electronic address:

Environmental pollutants including ultrafine particulate matter (UFPs) and adverse meteorological conditions pose significant public health impacts, particularly affecting respiratory health. This study aims to elucidate the synergistic effects of cold-humid conditions and UFPs exposure on respiratory health, utilizing Carbon Black Nanoparticles (CB-NPs) as surrogates for UFPs. Through comprehensive lung function tests, histopathological examinations, and biomarker analyses, this research focuses on the modulation of oxidative stress signaling pathways and NF-κB activation.

View Article and Find Full Text PDF

Unveiling airborne threats: Vertical profiles of multiple emerging pollutants in PM across the urban atmosphere of Southern China.

J Hazard Mater

December 2024

SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China. Electronic address:

PM has a detrimental impact on human health and has become a focus of widespread concern. The tempo-spatial distribution of emerging pollutants has been extensively studied, while there is a scarcity of understanding their vertical distribution in atmospheric environment. Here we investigated the vertical profiles of phthalate esters (PAEs), organophosphate esters (OPEs), neonicotinoids (NEOs), and per-and polyfluorinated substances (PFASs) in PM at ground level (4.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!