Solid waste from Jordanian olive oil processing (OOSW) was used to prepare biochar samples by slow pyrolysis at terminal temperatures of 350, 450, 550 and 630 °C; henceforth known as BC-350, BC-450, BC-550 and BC-630, respectively. These samples were characterized by Fourier transform infrared spectroscopy, scanning electron microscopy and X-ray diffraction, ash content, moisture content and surface area. The ability of the biochar to remove Hg ions from aqueous solutions was investigated in laboratory scale batch experiments. The kinetics, effect of pH and temperature were studied. The optimum pH value for Hg adsorption was 5. Dubinin-Radushkevich (D-R) isotherm model was the best fit for the experimental results. Based on the D-R model, the maximum adsorption capacities at 25 °C were 84.93, 94.48, 96.11 and 104.59 mg.g, for BC-350, BC-450, BC-550 and BC-630, respectively. The pseudo-second-order kinetic model was a good fit for the experimental data. The calculated change in free energy ΔG and enthalpy ΔH indicated that the adsorption process was spontaneous and exothermic in nature. The positive value of ΔS showed increased randomness of the solid/solution interface during the adsorption. The results indicated that biochar derived from OOSW can be a good adsorbent for treatment of water contaminated with Hg.

Download full-text PDF

Source
http://dx.doi.org/10.2166/wst.2016.378DOI Listing

Publication Analysis

Top Keywords

slow pyrolysis
8
jordanian olive
8
olive oil
8
oil processing
8
solid waste
8
ions aqueous
8
aqueous solutions
8
bc-350 bc-450
8
bc-450 bc-550
8
bc-550 bc-630
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!