We report a database of circadian genes in eukaryotes (CGDB, http://cgdb.biocuckoo.org), containing ∼73 000 circadian-related genes in 68 animals, 39 plants and 41 fungi. Circadian rhythm is ∼24 h rhythm in behavioral and physiological processes that exists in almost all organisms on the earth. Defects in the circadian system are highly associated with a number of diseases such as cancers. Although several databases have been established for rhythmically expressed genes, a comprehensive database of cycling genes across phyla is still lacking. From the literature, we collected 1382 genes of which transcript level oscillations were validated using methods such as RT-PCR, northern blot and in situ hybridization. Given that many genes exhibit different oscillatory patterns in different tissues/cells within an organism, we have included information regarding the phase and amplitude of the oscillation, as well as the tissue/cells in which the oscillation was identified. Using these well characterized cycling genes, we have then conducted an orthologous search and identified ∼45 000 potential cycling genes from 148 eukaryotes. Given that significant effort has been devoted to identifying cycling genes by transcriptome profiling, we have also incorporated these results, a total of over 26 000 genes, into our database.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5210527 | PMC |
http://dx.doi.org/10.1093/nar/gkw1028 | DOI Listing |
Extracell Vesicles Circ Nucl Acids
October 2024
Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA 02114, USA.
The intertwined nature of cardiac and renal failure, where dysfunction in one organ predicts a poor outcome in the other, has long driven the interest in uncovering the exact molecular links between the two. Elucidating the mechanisms driving Cardiorenal Syndrome (CRS) will enable the development of targeted therapies that disrupt this detrimental cycle, potentially improving outcomes for patients. A recent study by Chatterjee .
View Article and Find Full Text PDFiScience
January 2025
Medical Research Institute KITANO HOSPITAL, PIIF Tazuke-kofukai, Kita-ku, Osaka 530-8480, Japan.
Activation of thyroid-stimulating hormone receptor (TSHR) fundamentally leads to hyperthyroidism. To elucidate TSHR signaling, we conducted transcriptome analyses for hyperthyroid mice that we generated by overexpressing TSH. TSH overexpression drastically changed their thyroid transcriptome.
View Article and Find Full Text PDFBreast Cancer (Dove Med Press)
January 2025
The Second Surgical Department of Breast Cancer, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, People's Republic of China.
Purpose: Cell division cycle protein 45 (CDC45) plays a crucial role in DNA replication. This study investigates its role in breast cancer (BC) and its impact on tumor progression.
Methods: We utilized the GEO database to screen differentially expressed genes (DEGs) and conducted enrichment analysis on these genes.
Mol Ther Nucleic Acids
March 2025
Department of Cell Biology and Genetics, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an 710061, P.R. China.
Alternative splicing (AS) plays a critical role in gene expression by generating protein diversity from single genes. This review provides an overview of the role of AS in regulating cell fate, focusing on its involvement in processes such as cell proliferation, differentiation, apoptosis, and tumorigenesis. We explore how AS influences the cell cycle, particularly its impact on key stages like G1, S, and G2/M.
View Article and Find Full Text PDFRegen Ther
March 2025
Department of Parasitology and Medical Entomology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, 56000, Cheras, Kuala Lumpur, Malaysia.
The Mesenchymal Stem Cell (MSC) is a multipotent progenitor cell with known differentiation potential towards various cell lineage, making it an appealing candidate for regenerative medicine. One major contributing factor to age-related MSC dysfunction is cellular senescence, which is the hallmark of relatively irreversible growth arrest and changes in functional properties. GATA4, a zinc-finger transcription factor, emerges as a critical regulator in MSC biology.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!