Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Metabolomics and lipidomics are emerging methods for detailed phenotyping of small molecules in samples. It is hoped that such data will: (i) enhance baseline prediction of patient response to pharmacotherapies (beneficial or adverse); (ii) reveal changes in metabolites shortly after initiation of therapy that may predict patient response, including adverse effects, before routine biomarkers are altered; and( iii) give new insights into mechanisms of drug action, particularly where the results of a trial of a new agent were unexpected, and thus help future drug development. In these ways, metabolomics could enhance research findings from intervention studies. This narrative review provides an overview of metabolomics and lipidomics in early clinical intervention studies for investigation of mechanisms of drug action and prediction of drug response (both desired and undesired). We highlight early examples from drug intervention studies associated with cardiometabolic disease. Despite the strengths of such studies, particularly the use of state-of-the-art technologies and advanced statistical methods, currently published studies in the metabolomics arena are largely underpowered and should be considered as hypothesis-generating. In order for metabolomics to meaningfully improve stratified medicine approaches to patient treatment, there is a need for higher quality studies, with better exploitation of biobanks from randomized clinical trials i.e. with large sample size, adjudicated outcomes, standardized procedures, validation cohorts, comparison witth routine biochemistry and both active and control/placebo arms. On the basis of this review, and based on our research experience using clinically established biomarkers, we propose steps to more speedily advance this area of research towards potential clinical impact.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5100629 | PMC |
http://dx.doi.org/10.1093/ije/dyw271 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!