Disorders of hearing and balance are most commonly associated with damage to cochlear and vestibular hair cells or neurons. Although these cells are not capable of spontaneous regeneration, progenitor cells in the hearing and balance organs of the neonatal mammalian inner ear have the capacity to generate new hair cells after damage. To investigate whether these cells are restricted in their differentiation capacity, we assessed the phenotypes of differentiated progenitor cells isolated from three compartments of the mouse inner ear - the vestibular and cochlear sensory epithelia and the spiral ganglion - by measuring electrophysiological properties and gene expression. Lgr5 progenitor cells from the sensory epithelia gave rise to hair cell-like cells, but not neurons or glial cells. Newly created hair cell-like cells had hair bundle proteins, synaptic proteins and membrane proteins characteristic of the compartment of origin. PLP1 glial cells from the spiral ganglion were identified as neural progenitors, which gave rise to neurons, astrocytes and oligodendrocytes, but not hair cells. Thus, distinct progenitor populations from the neonatal inner ear differentiate to cell types associated with their organ of origin.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5201044 | PMC |
http://dx.doi.org/10.1242/dev.139840 | DOI Listing |
Sci Rep
December 2024
Department of Otolaryngology, St. Marianna University School of Medicine, 1-16-2 Sugao, Miyamae-ku, Kawasaki City, 216-8511, Kanagawa, Japan.
Ménière's disease (MD) is characterized by loss of balance and hearing disorders. Although there is known to be endolymphatic hydrops involved in the pathological process, the pathogenesis of the disease is still largely unclear. Approximately half of patients with MD suffer from depressive symptoms and high levels of several stress hormones were observed in MD and depression, simultaneously.
View Article and Find Full Text PDFNat Commun
December 2024
The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA.
Deafness is the most common form of sensory impairment in humans and frequently caused by defects in hair cells of the inner ear. Here we demonstrate that in male mice which model recessive non-syndromic deafness (DFNB6), inactivation of Tmie in hair cells disrupts gene expression in the neurons that innervate them. This includes genes regulating axonal pathfinding and synaptogenesis, two processes that are disrupted in the inner ear of the mutant mice.
View Article and Find Full Text PDFJ Otol
July 2024
Department of Neurology, Ningbo No.2 Hospital, Ningbo, Zhejiang, 315010, PR China.
Objective: To evaluate the plasma levels of the otoconial proteins, otoconin-90 and otolin-1, in individuals diagnosed with vestibular neuritis (VN) and determine the feasibility of using these proteins as biomarkers for VN.
Methods: In this preliminary study, 30 patients diagnosed with VN and 70 healthy individuals were recruited and followed to confirm whether they had benign paroxysmal positional vertigo (BPPV) during the following time. The recorded data included measurements of height, weight, and history of diabetes mellitus or hypertension.
Front Neurol
December 2024
Department of Surgical Sciences, Otorhinolaryngology and Head and Neck Surgery, Uppsala University, Uppsala, Sweden.
Background: There still exists controversy about whether the healthy human middle ear mucosa is sterile or if it may harbor a diverse microbiome. Considering the delicacy of the human round window membrane (RWM), different mechanisms may exist for avoiding inner ear pathogen invasion causing sensorineural deafness. We re-analyzed archival human RWMs using light and transmission electron microscopy after decalcification to determine if bacteria are present in clinically normal human middle ears.
View Article and Find Full Text PDFLin Chuang Er Bi Yan Hou Tou Jing Wai Ke Za Zhi
January 2025
To explore the value of high resolution computed tomography(HRCT) combined with Magnetic Resonance Imaging(MRI) in the diagnosis of inner ear malformation. HRCT and MRI data of 82 patients with inner ear malformations were analyzed retrospectively. HRCT MPR and CPR reconstruction of the inner ear structure, facial nerve canal and oblique sagittal MRI reconstruction of the internal auditory canal were performed.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!