A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Differential responses of spinal motoneurons to fatigue induced by short-lasting repetitive and isometric tasks. | LitMetric

Compared to isometric activities, the neural basis of fatigue induced by repetitive tasks has been scarcely studied. Recently, we showed that during short-lasting repetitive tasks at the maximal possible rate (finger tapping for 10 and 30s), tapping rate and maximal voluntary contraction (MVC) force decrease at the end of finger tapping. We also observed larger silent periods (SP) induced by transcranial magnetic stimulation during MVC post finger tapping. However, if SP were induced by cervicomedullary stimulation (CMS) they remained unchanged. This suggested a supraspinal origin of fatigue for repetitive tasks. Nevertheless, CMS SP only partially explore spinal excitability; therefore, to evaluate a spinal origin of fatigue it is essential to know the features of the CMS-evoked potentials (CMEP). Herein, we evaluated (n=15) the amplitude of the CMEP during MVC executed immediately (no gap) after a short-lasting finger tapping task; we also evaluated the compound muscle action potential (CMAP) so that the amplitude of the CMEP was expressed as a function of the CMAP amplitude. Indices of fatigue obtained during finger tapping were compared with those obtained during short-lasting maximal isometric tasks. While indices of excitability increased initially in both tasks, they decreased with the isometric task only when the task was prolonged to 30s. We suggest that the inability to maintain increased levels of spinal excitability during task execution is a neurophysiological mark of fatigue. Our results suggest that the origin of fatigue induced by brief and fast repetitive tasks is not spinal.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.neuroscience.2016.10.038DOI Listing

Publication Analysis

Top Keywords

finger tapping
20
repetitive tasks
16
fatigue induced
12
origin fatigue
12
short-lasting repetitive
8
isometric tasks
8
spinal excitability
8
amplitude cmep
8
cmap amplitude
8
fatigue
7

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!