Leymus chinensis is the most promising grass species for salt-alkaline grassland restoration in northern China. However, little information exists concerning the role of arbuscular mycorrhizal (AM) symbiosis in the adaptation of seedlings to salt-alkali stress, particularly under increased nitrogen deposition, which has become a major environmental problem throughout the world. In this study, Leymus chinensis seedlings were cultivated in soil with 0, 100 and 200mM NaCl/NaHCO under two forms of nitrogen (10mM NHNO or NHCl: NHNO=3:1), and the root colonization, growth and photosynthetic characteristics of the seedlings were measured. The results showed that the colonization rate and intensity decreased with increasing salt-alkali stress and were much lower under alkali stress. The nitrogen treatments also decreased the colonization, particularly under the NH-N treatment. Compared with the non-mycorrhizal controls, mycorrhizal seedlings generally presented higher plant biomass, photosynthetic parameters and contents of photosynthetic pigments under stresses, and the inhibitive effects of alkali stress were substantially stronger. In addition, both nitrogen forms decreased the physiological indexes compared with those of the AM seedlings. Our results suggest that salt stress and alkali stress are significantly different and that the salt-alkali tolerance of Leymus chinensis seedlings could be enhanced by associations with arbuscular mycorrhizal fungi, in which would yield better plant growth and photosynthesis. Excessive nitrogen in the soil affects mycorrhizal colonization and thereby inhibits the growth and photosynthetic ability of the seedlings.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scitotenv.2016.10.091DOI Listing

Publication Analysis

Top Keywords

leymus chinensis
16
arbuscular mycorrhizal
12
chinensis seedlings
12
salt-alkali stress
12
alkali stress
12
mycorrhizal fungi
8
growth photosynthesis
8
photosynthetic pigments
8
seedlings
8
seedlings salt-alkali
8

Similar Publications

Vegetation restoration can be effective in containing gully head advance. However, the effect of vegetation restoration type on soil aggregate stability and erosion resistance at the head of the gully is unclear. In this study, five types of vegetation restoration-Pinus tabulaeformis (PT), Prunus sibirica (PS), Caragana korshinskii (CKS), Hippophae rhamnoides (HR), and natural grassland (NG, the dominant species is Leymus chinensis)-in the gully head were studied.

View Article and Find Full Text PDF

Plant interference is a key factor influencing plant coexistence and species composition. The two primary forms of plant interference-allelopathy and resource competition-are often difficult to separate. This study conducted an outdoor pot experiment to quantify the distinct contributions of resource competition and allelopathy of on seedling growth of three species: , , and .

View Article and Find Full Text PDF

Grazing livestock in grasslands face the challenge of obtaining sufficient nutrition due to uneven distribution of plant species and fluctuating vegetation productivity and nutrient levels. In northern China, and are the dominant perennial species in native grasslands, but they provide limited nutrition compared to forbs with higher crude protein (CP) content. While dietary ingredients can affect the nutritional intake of grazing livestock, the influence of different grazing strategies on dietary selection remains unclear.

View Article and Find Full Text PDF

As a crucial forage grass, Leymus chinensis plays significant roles in soil and water conservation owing to its robust stress resistance. However, the underlying molecular mechanisms of its stress tolerance remain unclear. In this study, a novel gene, designated as LcASR (Abiotic Stress Resistance in Leymus chinensis), imparting resilience to both high light and drought, was identified.

View Article and Find Full Text PDF

Preferential Carbon Allocation Into Vegetative Ramets and Belowground Organs During the Seed-Filling Stage Limits Seed Set in Leymus chinensis.

Plant Cell Environ

October 2024

Key Laboratory of Vegetation Ecology of the Ministry of Education, Jilin Songnen Grassland Ecosystem National Observation and Research Station, Institute of Grassland Science, Northeast Normal University, Changchun, China.

Clonal perennial grasses are the dominant species in almost all natural grasslands, however their seed production is typically low. The reasons why seed set is so low remains unclear. We studied a rhizomatous grass (Leymus chinensis) using C tracing the different photosynthetic organs to investigate carbon fixation and allocation during the seed-filling stage.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!