Hydrothermal liquefaction of Cyanidioschyzon merolae and the influence of catalysts on products.

Bioresour Technol

Chemical and Materials Engineering Department, New Mexico State University, Las Cruces, NM 88003, USA; School for Engineering of Matter, Transport and Energy, Arizona State University, Tempe, AZ 85287, USA. Electronic address:

Published: January 2017

This work investigates the hydrothermal liquefaction (HTL) of Cyanidioschyzon merolae algal species under various reaction temperatures and catalysts. Liquefaction of microalgae was performed with 10% solid loading for 30min at temperatures of 180-300°C to study the influences of two base and two acid catalysts on HTL product fractions. Maximum biocrude oil yield of 16.98% was obtained at 300°C with no catalyst. The biocrude oil yield increased to 22.67% when KOH was introduced into the reaction mixture as a catalyst. The algal biocrude and biochar has a higher heating values (HHV) of 32.22MJkg and 20.78MJkg respectively when no catalyst was used. Gas chromatography time of flight mass spectrometry (GC/TOFMS) was employed to analyze the biocrude oil composition, and elemental analysis was performed on the algae, biocrude and biochar samples. Analysis of the HTL aqueous phase revealed the presence of valuable products.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.biortech.2016.10.022DOI Listing

Publication Analysis

Top Keywords

biocrude oil
12
hydrothermal liquefaction
8
cyanidioschyzon merolae
8
oil yield
8
biocrude biochar
8
biocrude
5
liquefaction cyanidioschyzon
4
merolae influence
4
influence catalysts
4
catalysts products
4

Similar Publications

Green coal and lubricant via hydrogen-free hydrothermal liquefaction of biomass.

Nat Commun

January 2025

Laboratory of Environment-Enhancing Energy (E2E), College of Water Resources and Civil Engineering, China Agricultural University, Beijing, 100083, China.

Biocrude derived from biomass via hydrothermal liquefaction (HTL) is a sustainable substitute for petroleum to obtain energy and biochemicals. Upgrading biocrude inevitably faces the trade-off between consuming large amounts of hydrogen via hydrotreating and high yield of solid residue without additional hydrogen. In this work, we report a non-hydrogenated refinery paradigm for nearly complete valorization (~90%), via co-generating green coal and bio-lubricant.

View Article and Find Full Text PDF

Exploring the catalytic hydrothermal liquefaction of Namibian encroacher bush.

Sci Rep

January 2025

Process and Energy Department, University of Technology of Delft, Leeghwaterstraat 39, 2628 CB, Delft, The Netherlands.

An urgent ecological issue is the threat posed by invasive species, which are becoming more widespread especially in Africa. These encroachments damage ecosystems, pose a threat to biodiversity, and outcompete local plants and animals. This article focuses on converting Acacia Mellifera from Namibia, commonly known as encroacher bush (EB) into high-quality drop-in intermediates for the chemical and transport industry via hydrothermal liquefaction (HTL).

View Article and Find Full Text PDF

Organosolv-derived lipids from hemicellulose and cellulose, and pre-extracted tannins as additives upon hydrothermal liquefaction (HTL) of spruce bark lignins to bio-oil.

BMC Biotechnol

November 2024

Biochemical Process Engineering, Division of Chemical Engineering, Department of Civil, Environmental and Natural Resources Engineering, Luleå University of Technology, Luleå, SE-971 87, Sweden.

Article Synopsis
  • The study explores using spruce bark, a largely untapped resource, to produce bio-oil, a renewable energy source, as a response to rising global temperatures and petroleum waste issues.
  • It utilizes a process called hydrothermal liquefaction, enhancing bio-oil quality by extracting polysaccharides and converting them into lipids with the help of specific microorganisms.
  • Results showed that pre-extracting tannins and modifying the heating rates in the production process improved the energy content and yield of the bio-oil while reducing its oxygen content.
View Article and Find Full Text PDF

Renewable Fuels and Chemical Recycling of Plastics via Hydrothermal Liquefaction.

Acc Chem Res

December 2024

Penn State University, Chemical Engineering Department, University Park, Pennsylvania 16802, United States.

Article Synopsis
  • Hydrothermal liquefaction (HTL) is a process that converts various biomass types into renewable bio-oil through reactions in hot, compressed water, producing additional gas and solid products.
  • The process retains a substantial amount of chemical energy, recovering around 70-80% of it in an oil that weighs only 20-50% of the original biomass, though the bio-oil often requires further upgrading to be usable as fuel.
  • HTL can also convert different plastics into oil, achieving high yields with certain types while being less effective with others, indicating its potential for recycling and valorizing post-consumer plastic waste.
View Article and Find Full Text PDF

Electrospinning is utilized to fabricate catalytic nanofiber scaffold for biocrude upgrading in hydrodeoxygenation (HDO) following computational studies suggesting the need for nano-catalysts for efficient HDO conversion and selectivity. Here, Pt-TiO nanofibers are fabricated through electrospinning, followed by wet impregnation with a heteropoly acid (HPA), tungstosilicic acid. Intensive heat treatments were incorporated during and after processes to obtain a HPA doped Pt-TiO nano-catalyst.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!