The study of receptor endocytosis is important to our understanding of the signal transduction events initiated by axon guidance cues in growth cones. Fab fragments of antibodies to guidance receptors and endocytic cargoes like transferrin and cholera toxin-B are the tools of choice for studying the dynamics of receptor internalization and intracellular trafficking by different pathways. We describe a method where in vitro cultures of growth cones are incubated with these ligands in the presence or absence of Sema3A, followed by stripping of remaining ligand on cell-surface and analysis by immunofluorescence techniques. These techniques can be employed for studying the endocytosis of any axon guidance receptor in response to attractive or repulsive guidance cues and, in particular, to allow the differential trafficking of specific receptor components to be revealed.

Download full-text PDF

Source
http://dx.doi.org/10.1007/978-1-4939-6448-2_22DOI Listing

Publication Analysis

Top Keywords

growth cones
12
axon guidance
8
guidance cues
8
receptor
5
tracking differential
4
differential endocytosis
4
endocytosis trafficking
4
trafficking semaphorin
4
semaphorin receptor
4
receptor complexes
4

Similar Publications

A generative model of the connectome with dynamic axon growth.

Netw Neurosci

December 2024

Department of Biomedical Engineering, Faculty of Engineering and Information Technology, The University of Melbourne, Melbourne, VIC, Australia.

Connectome generative models, otherwise known as generative network models, provide insight into the wiring principles underpinning brain network organization. While these models can approximate numerous statistical properties of empirical networks, they typically fail to explicitly characterize an important contributor to brain organization-axonal growth. Emulating the chemoaffinity-guided axonal growth, we provide a novel generative model in which axons dynamically steer the direction of propagation based on distance-dependent chemoattractive forces acting on their growth cones.

View Article and Find Full Text PDF

Netrin-1, an essential extracellular protein, has gained significant attention due to its pivotal role in guiding axon and cell migration during embryonic development. The fundamental significance of netrin-1 in developmental biology is reflected in its high conservation across different species as a part of the netrin family. The bifunctional nature of netrin-1 demonstrates its functional versatility, as it can function as either a repellent or an attractant according to the context and the expressed receptors on the target cells including the deleted in colorectal cancer (DCC), the uncoordinated-5 (UNC5), DSCAM, Neogenin-1, Adenosine A2b and Draxin receptors.

View Article and Find Full Text PDF

Optogenetic Control of Receptor-mediated Growth Cone Dynamics in Neurons.

Mol Biol Cell

December 2024

Department of Neuroscience, Jefferson Center for Synaptic Biology, Vickie and Jack Farber Institute for Neuroscience, Sydney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19107.

Development of neuronal connections is spatially and temporally controlled by extracellular cues which often activate their cognate cell surface receptors and elicit localized cellular responses. Here, we demonstrate the use of an optogenetic tool to activate receptor signaling locally to induce actin-mediated growth cone remodeling in neurons. Based on the light-induced interaction of light between Cryptochrome 2 (CRY2) and CIB1, we generated a bicistronic vector to co-expresses CRY2 fused to the intracellular domain of a guidance receptor and a membrane-anchored CIB1.

View Article and Find Full Text PDF

Integrin signaling plays important roles in development and disease. An adhesion signaling network called the integrin adhesome has been principally defined using bioinformatics and cell-based proteomics. To date, the adhesome has not been studied using integrated proteomic and genetic approaches.

View Article and Find Full Text PDF

Advillin is an actin-binding protein involved in regulating the organization of actin filaments and the dynamics of axonal growth cones. In mice, advillin is exclusively expressed in somatosensory neurons, ubiquitously expressed in all neuron subtypes during neonatal ages and particularly enriched in isolectin B4-positive (IB4+) non-peptidergic neurons in adulthood. We previously showed that advillin plays a key role in axon regeneration of somatosensory neurons during peripheral neuropathy.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!