Anatomy of the Cervicomental Region: Insights From an Anatomy Laboratory and Roundtable Discussion.

Dermatol Surg

*Department of Plastic Surgery, University of Texas Southwestern Medical Center, Dallas, Texas; †Department of Dermatology, University of California Los Angeles and Private Practice (Skin Care and Laser Physicians of Beverly Hills), Los Angeles, California; ‡Private Practice, Boca Raton, Florida; §Department of Dermatology, Saint Louis University School of Medicine, St. Louis, Missouri; ‖Private Practice (Total Skin & Beauty Dermatology Center, P.C.), Birmingham, Alabama and Departments of Dermatology and Ophthalmology, University of Alabama at Birmingham, Birmingham, Alabama; ¶Evidence Scientific Solutions, Philadelphia, Pennsylvania; **Department of Otolaryngology/Facial Plastic Surgery, University of California Davis Medical Center, Sacramento, California.

Published: November 2016

In 2015, ATX-101 (deoxycholic acid injection; Kybella in the United States and Belkyra in Canada; Kythera Biopharmaceuticals, Inc., Westlake Village, CA [an affiliate of Allergan plc, Dublin, Ireland]) was approved as a first-in-class injectable drug for reduction of submental fat. Use of a pharmacologic/injectable therapy within the submental region requires a thorough understanding of cervicomental anatomy to ensure proper injection technique and safe administration. To this end, an anatomy laboratory was conducted to review key external landmarks and important internal anatomic structures that characterize the lower face and anterior neck. External landmarks that define the boundaries of the cervicomental and submental regions were identified including the inferior mandibular border, the anterior border of the sternocleidomastoid muscle, the antegonial notch, the submental crease, the thyroid notch, and the hyoid bone. Relevant internal anatomic structures, including preplatysmal submental fat (the target tissue for ATX-101) and the platysma muscle as well as critical neurovascular and glandular tissues were revealed by dissection. Of particular interest was the marginal mandibular branch of the facial nerve because it typically courses along the inferior mandibular border near the proposed treatment area for ATX-101.

Download full-text PDF

Source
http://dx.doi.org/10.1097/DSS.0000000000000896DOI Listing

Publication Analysis

Top Keywords

anatomy laboratory
8
submental fat
8
external landmarks
8
internal anatomic
8
anatomic structures
8
inferior mandibular
8
mandibular border
8
submental
5
anatomy
4
anatomy cervicomental
4

Similar Publications

Importance: Obsessive-compulsive and related disorders (OCRDs) encompass various neuropsychiatric conditions that cause significant distress and impair daily functioning. Although standard treatments are often effective, approximately 60% of patients may not respond adequately, underscoring the need for novel therapeutic approaches.

Objective: To evaluate improvement in OCRD symptoms associated with glutamatergic medications as monotherapy or as augmentation to selective serotonin reuptake inhibitors, with a focus on double-blind, placebo-controlled randomized clinical trials (RCTs).

View Article and Find Full Text PDF

Blue Light Damages Retinal Ganglion Cells Via Endoplasmic Reticulum Stress and Autophagy in Chickens.

Invest Ophthalmol Vis Sci

January 2025

Laboratory of Anatomy of Domestic Animals, National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Haidian, Beijing, China.

Purpose: Because chickens have excellent light perception properties, this study focused on investigating whether monochromatic light can cause photodamage in chicken retinal ganglion cells (RGCs).

Methods: Post-hatching day chickens were exposed to four different light-emitting diode light environments for five weeks, respectively, monochromatic blue light (480 nm), green light (560 nm), red light (660 nm), or white light (6000 K). The mechanisms through which monochromatic light influences the structure of the chicken retina were analyzed by detecting the morphological structure of the retina, gene and protein expression levels, and the ultrastructure of the optic nerve.

View Article and Find Full Text PDF

In Vivo Clonal Analysis Using MADM with Spatiotemporal Specificity.

Methods Mol Biol

January 2025

IDG/McGovern Institute of Brain Research, Tsinghua University, Beijing, People's Republic of China.

Mosaic analysis with double markers (MADM) is a powerful in vivo lineage tracing technique. It utilizes Cre recombinase-dependent interchromosomal recombination to restore the stable expression of two fluorescent proteins sparsely in individual dividing stem or progenitor cells and their progenies. Here, we describe the application of this technique for quantitative lineage analysis of radial glial progenitors in the developing mouse neocortex at the single-cell resolution.

View Article and Find Full Text PDF

Bayesian Phylogenetic Lineage Reconstruction with Loss of Heterozygosity Mutations Derived from Single-Cell RNA Sequencing.

Methods Mol Biol

January 2025

Allen Discovery Center for Lineage Tracing and Department of Laboratory Medicine & Pathology, University of Washington, Seattle, WA, USA.

Mutations are acquired frequently, such t`hat each cell's genome inscribes its history of cell divisions. Loss of heterozygosity (LOH) accumulates throughout the genome, offering large encoding capacity for phylogenetic inference of cell lineage.In this chapter, we demonstrate a method, using single-cell RNA sequencing, for reconstructing cell lineages from inferred LOH events in a Bayesian manner, annotating the lineage with cell phenotypes, and marking developmental time points based on X-chromosome inactivation.

View Article and Find Full Text PDF

Purpose: The main objective of this study was to conduct a radioanatomical study of the osteo-myo-cutaneous scapulo-dorsal pedicled flap.

Methods: A radiological study was performed to study the anatomical variations of the dorsal scapular pedicle (origin, course of the deep branch of the dorsal scapular artery (DSA) in relation to the medial border of the scapula, perforators from the superficial branch of the DSA). Perforators from the superficial branch of the DSA were also identified on anatomical subjects, and their cutaneous vascular territory was determined.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!