Amorphous FeO/Graphene Composite Nanosheets with Enhanced Electrochemical Performance for Sodium-Ion Battery.

ACS Appl Mater Interfaces

State Key Laboratory of Chemical Resource Engineering, Key Laboratory of Carbon Fiber and Functional Polymers, Ministry of Education, Beijing University of Chemical Technology, Beijing 100029, P. R. China.

Published: November 2016

With the increasing use of sodium-ion batteries (SIBs), developing cost-effective anode materials, such as metal oxide, for Na-ion storage is one of the most attractive topics. Due to the obviously larger ion radius of Na than that of Li, most metal oxide electrode materials fail to exhibit the same high performance for SIBs like that of Li-ion batteries. Herein, iron oxide was employed to demonstrate a concept that rationally designing an amorphous structure should be useful to enhance Na-ion storage performance of a metal oxide. Amorphous FeO/graphene composite nanosheets (FeO@GNS) were successfully synthesized by a facile approach as anodes for SIBs. It reveals that amorphous FeO nanoparticles with an average diameter of 5 nm were uniformly anchored on the surface of graphene nanosheets by the strong C-O-Fe oxygen-bridge bond. Compared to well-crystalline FeO, amorphous FeO@GNS exhibited superior sodium storage properties such as high electrochemical activity, high initial Coulombic efficiency of 81.2%, and good rate performance. At a current density of 100 mA/g, amorphous FeO@GNS composites show a specific capacity of 440 mAh/g, which is obviously higher than the specific capacity of 284 mAh/g of crystalline FeO. Even at a high current density of 2 A/g, amorphous FeO@GNS composites still exhibit a specific capacity as high as 219 mAh/g. The excellent electrochemical performance should be attributed to the amorphous structures of FeO as well as strongly interfacial interaction between FeO and GNS, which not only accommodate more electrochemical active sites and provide the more transmission channels for sodium ions but also benefit electron transfer as well as effectively buffer the volume change of host materials during sodiation and desodiation. This concept for designing amorphous iron oxide anodes for SIBs is also expected to facilitate preparation of various amorphous nanostructure of other metal oxides and improve their Na-ion storage performance.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsami.6b09444DOI Listing

Publication Analysis

Top Keywords

metal oxide
12
na-ion storage
12
amorphous feo@gns
12
specific capacity
12
amorphous
10
amorphous feo/graphene
8
feo/graphene composite
8
composite nanosheets
8
electrochemical performance
8
iron oxide
8

Similar Publications

Isoelectric Point of Metal Oxide Films Formed by Anodization.

Langmuir

January 2025

Chemistry and Structure of novel Materials, University of Siegen, Paul-Bonatz Strasse 9-11, 57068 Siegen, Germany.

The surface charge of metal oxides is an important property that significantly contributes to a wide range of phenomena, including adsorption, catalysis, and material science. The surface charge can be predicted by determining the isoelectric point (IEP) of a material and the pH of a solution. Although there have been several studies of the IEP of metal oxide (nano)particles, only a few have reported the IEP of metal oxide films.

View Article and Find Full Text PDF

The impact of anions on electrooxidation of perfluoroalkyl acids by porous Magnéli phase titanium suboxide anodes.

PLoS One

January 2025

Department of Crop and Soil Sciences, College of Agricultural and Environmental Sciences, University of Georgia, Griffin, Georgia, United States of America.

Previous studies have indicated the great performance of electrooxidation (EO) to mineralize per- and polyfluoroalkyl substances (PFASs) in water, but different anions presented in wastewater may affect the implementation of EO treatment in field applications. This study invetigated EO treatment of perfluorooctane sulfonate (PFOS) and perfluorooctanoic acid (PFOA), two representative perfluoroalkyl acids (PFAAs), using porous Magnéli phase titanium suboxide anodes in electrolyte solutions with different anions present, including NO3-, SO42-, CO32- and PO43-. The experiment results indicate that CO32- enhanced PFAS degradation, while NO3- suppressed the degradation reactions with its concentration higher than 10 mM.

View Article and Find Full Text PDF

Atomic Imaging of the Surface Termination and Reconstruction of Low and High Index Iridium Oxide Surfaces and Insights into Their Facet-Dependent Oxygen Evolution Activities.

ACS Appl Mater Interfaces

January 2025

Institute of Materials Research, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, Guangdong, PR China.

Resolving the atomic surface structure, particularly surface termination or reconstruction, is essential for understanding the catalytic properties of metal oxides. Although rutile phase iridium dioxide (IrO) is the state-of-the-art electrocatalyst for the oxygen evolution reaction (OER) in water splitting, the atomic-level surface structures of IrO remain largely unexplored, limiting our understanding of its facet-dependent OER activities. Herein, we perform aberration-corrected integrated differential phase contrast scanning transmission electron microscopy of the low- and high-index surface structures of spindle-shaped IrO nanorods and reveal distinct surface terminations and/or reconstructions on different surfaces.

View Article and Find Full Text PDF

Building upon an earlier study of heme-nitrosyl complexes (. , , 20496-20505), we examined a wide range of nonheme {FeNO} complexes (the superscript represents the Enemark-Feltham count) and two dinitrosyl iron complexes using DMRG-CASSCF calculations. Analysis of the wave functions in terms of resonance forms with different [π*(NO)] occupancies (where = 0-4 for mononitrosyl complexes) identified the dominant electronic configurations of {FeNO} and {FeNO} complexes as Fe-NO and Fe-NO, respectively, mirroring our previous findings on heme-nitrosyl complexes.

View Article and Find Full Text PDF

The textile industry is one of the main industries that benefited from the industrial revolution. Therefore, discharging of dyes from textile, paper, plastic, and rubber industries is inevitable. This colored wastewater prevents sunlight penetration and highly affects water sources.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!