Biodegradation of polychlorinated biphenyls (PCBs) is an important transformation and detoxification route in the environment. To better understand the influence of PCB congener compositions on dechlorination, sediments from two rivers, Hudson and Grasse, and two PCB mixtures (PCB 5/12, 64/71, 105/114, and 149/153/170 in Mixture 1 and PCB 5/12, 64/71, 82/97/99, and 144/170 in Mixture 2) were used for this microcosm study. The Grasse River sediment microcosms exhibited more extensive dechlorination than the Hudson River sediment microcosms. The extent of dechlorination was predominantly controlled by sediment itself, not by the PCB compositions. Rare ortho dechlorination, targeting mono-ortho PCB congeners was observed in Grasse sediment, indicating a potential for full dechlorination of some PCBs in this sediment. The identified ortho dechlorination pathways were PCB 28 (24-4-CB) to PCB 15 (4-4-CB) and PCB 25 (24-3-CB) to PCB 13(3-4-CB). The relative abundances of Dehalococcoides were much higher in both sediments spiked with PCBs. An apparent increase of Dehalococcoides 16S rRNA genes coincided with the commencement of dechlorination. The dechlorination preferences were identified using a modified data analysis approach focusing on chlorine neighboring conditions. In both sediments, the overall dechlorination preferred meta > para > ortho. Specially, ortho-/double-flanked meta-chlorines were primarily targeted followed by single-/double-flanked para-chlorines.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.est.6b03892 | DOI Listing |
J Hazard Mater
January 2025
Shanxi Key Laboratory of Sorghum Genetic and Germplasm Innovation, Sorghum Research Institute, Shanxi Agricultural University, Jinzhong 030600, China.
The partitioning and migrating of antibiotic residues pose a considerable pollution to the river environment. However, a source-specific approach for quantifying the fate of antibiotics is lacking. To further elucidate the migration behavior of antibiotics from different pollution sources in aquatic environments, we introduced a source-specific partition coefficient (S-Kp) based on Positive Matrix Factorization (PMF) model to improve the multimedia model.
View Article and Find Full Text PDFMar Pollut Bull
January 2025
Virginia Institute of Marine Science, William & Mary, Gloucester Point, VA 23062, United States of America.
This study assessed effectiveness of regulations reducing environmental butyltin concentrations in Southern Chesapeake Bay over the 1999-2021 period. Water column monitoring of the Elizabeth River from 1999 to 2006 demonstrated decreasing TBT from 2003 to 2006 (average >1 ng/L at most stations) to <1 ng L by 2019 but with higher concentrations of degradation products DBT and MBT. TBT degrades to DBT and MBT within sediments, and releases degradation products over time.
View Article and Find Full Text PDFSci Total Environ
January 2025
US Geological Survey, New England Water Science Center, Northborough, MA, USA.
Groundwater-dependent ecosystems in areas with industrial land use are at risk of exposure to a PFAS chemicals. We investigated one such system with several known PFAS source areas, where high and low permeability sediments (glacial) coupled with groundwater-lake and groundwater/surface-water interactions created complex 'source to seep' dynamics. Using heat-tracing and chemical methods, numerous preferential groundwater discharge zones were identified and sampled across the upper Quashnet River stream-wetland system in Mashpee, MA, USA, downgradient of Joint Base Cape Cod (JBCC).
View Article and Find Full Text PDFSensors (Basel)
January 2025
Faculty of Architecture and Civil Engineering, Karlsruhe University of Applied Sciences, 76133 Karlsruhe, Germany.
Engineers, geomorphologists, and ecologists acknowledge the need for temporally and spatially resolved measurements of sediment clogging (also known as colmation) in permeable gravel-bed rivers due to its adverse impacts on water and habitat quality. In this paper, we present a novel method for non-destructive, real-time measurements of pore-scale sediment deposition and monitoring of clogging by using wire-mesh sensors (WMSs) embedded in spheres, forming a smart gravel bed (GravelSens). The measuring principle is based on one-by-one voltage excitation of transmitter electrodes, followed by simultaneous measurements of the resulting current by receiver electrodes at each crossing measuring pores.
View Article and Find Full Text PDFInsects
January 2025
Program in Ecology and Environmental Science and Large River Studies Center, Department of Biology, Winona State University, Winona, MN 55987, USA.
Prior to implementing watershed-wide projects to reduce the impacts of agriculture on regional streams and rivers, stream habitats and benthic aquatic macroinvertebrate communities were assessed at 15 sites on the South Branch Root River and its major tributaries in southeastern Minnesota, USA. Triplicate kick-net samples were collected from each site during three time periods (1998, 1999, 2006/2008) and stream habitats were inventoried within 150 m long sections at each site. In total, 26,760 invertebrates representing 84 taxa were collected and used to rate stream sites using a regional multi-metric benthic index of biotic integrity (BIBI).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!