Oxidation of silicon nanoclusters depending on the temperature and oxygen pressure is explored from first principles using the evolutionary algorithm, and structural and thermodynamic analysis. From our calculations of 90 SiO clusters we found that under normal conditions oxidation does not stop at the stoichiometric SiO composition, as it does in bulk silicon, but goes further placing extra oxygen atoms on the cluster surface. These extra atoms are responsible for light emission, relevant to reactive oxygen species and many of them are magnetic. We argue that the super-oxidation effect is size-independent and discuss its relevance to nanotechnology and miscellaneous applications, including biomedical ones.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/c6nr07504e | DOI Listing |
Talanta
December 2024
College of Chemistry and Molecular Engineering. Qingdao University of Science and Technology, Qingdao, 266042, China. Electronic address:
In this work, a new dual-signal fluorescence strategy based on nano-gold molecular beacon (MB) and in-situ generated silver nano-clusters (NCs) coupled with multiple amplification technique was developed for sensitive detection of miRNA (let-7b). miRNA can recognize both hairpin probe (HP) and auxiliary DNA, inducing dual-cycle amplification-process to release plenty of DNA S2. As the report probe carboxyfluorescein (FAM) was modified on Au nanoparticles (AuNPs), the fluorescent signal was quenched due to the fluorescence resonance energy transfer (FRET).
View Article and Find Full Text PDFACS Nano
December 2024
Interdisciplinary Materials Research Center, School of Materials Science and Engineering, Tongji University, Shanghai 201804, China.
J Phys Chem Lett
November 2024
Department of Chemistry, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi Kohoku-ku, Yokohama 223-8522, Japan.
The design of materials with intriguing electronic properties is crucial for advancing nanoscale technologies, where precise control over atomic structure and electronic behavior is essential. Metal-encapsulating silicon cage superatoms (SAs) provide a new paradigm for molecular-scale material design, allowing fine-tuning of both structure and electronic characteristics. The formation of superatoms mimicking halogens, noble gases, and alkali metals has been well-studied, particularly with M@Si, where early transition metals from groups 3 to 5 stabilize within a Si cage, achieving a 68-electron configuration.
View Article and Find Full Text PDFBiosens Bioelectron
January 2025
Department of Chemistry, University of Otago, Dunedin, 9016, New Zealand. Electronic address:
This study presents the development of a dual-mode aptasensor for the sensitive detection of kanamycin (KAN), utilizing both fluorescence and colorimetric signals. The aptasensor was constructed using amino-functionalized silica nanoparticles (SiO) combined with copper nanoclusters (CuNCs) and DNA-templated silver nanoclusters (DNA-AgNCs). Encapsulating CuNCs within SiO (CuNCs@SiO) enhanced their stability by shielding them from environmental interference, while maintaining their bright blue fluorescence as a reference signal.
View Article and Find Full Text PDFMikrochim Acta
November 2024
Technology Innovation Center of Mass Spectrometry for State Market Regulation, Center for Advanced Measurement Science, National Institute of Metrology, Beijing, 100029, People's Republic of China.
Novel green-emitting fluorescent microspheres (GreFMPs) were assembled by loading highly luminescent gold nanoclusters (Arg/ATT/AuNCs) on dendritic mesoporous silica nanoparticles (DMSNs) via PEI-mediated electrostatic adsorption. The fluorescence microspheres exhibit excellent monodispersion with average diameters about (254.5 ± 34.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!