AI Article Synopsis

  • Recent research has identified 200 genetic risk loci for inflammatory bowel disease (IBD), but the specific genes and causal variants involved remain largely unknown.
  • Innovative approaches like targeted GWAS and multi-omics studies are being used to pinpoint causal variants and understand their effects on gene expression and protein function.
  • The research highlights key genes such as NOD2 and IL23R, while emphasizing the need to consider factors beyond genetics, including the gut microbiome and environmental influences, to fully understand IBD pathology.

Article Abstract

Recent studies have greatly improved our insight into the genetic background of inflammatory bowel disease (IBD). New high-throughput technologies and large-scale international collaborations have contributed to the identification of 200 independent genetic risk loci for IBD. However, in most of these loci, it is unclear which gene conveys the risk for IBD. More importantly, it is unclear which variant within or near the gene is causal to the disease. Using targeted GWAS, imputation, resequencing of risk loci, and in silico fine-mapping of densely typed loci, several causal variants have been identified in IBD risk genes, and various pathological pathways have been uncovered. Current research in the field of IBD focuses on the effect of these causal variants on gene expression and protein function. However, more elements than only the genome must be taken into account to disentangle the multifactorial pathology of IBD. The genetic risk loci identified to date only explain a small part of genetic variance in disease risk. Currently, large multi-omics studies are incorporating factors ranging from the gut microbiome to the environment. In this review, we present the progress that has been made in IBD genetic research and stress the importance of studying causality to increase our understanding of the pathogenesis of IBD. We highlight important causal genetic variants in the candidate genes NOD2, ATG16L1, IRGM, IL23R, CARD9, RNF186, and PRDM1. We describe their downstream effects on protein function and their direct effects on the gut immune system. Furthermore, we discuss the future role of genetics in unravelling disease mechanisms in IBD. Copyright © 2016 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.

Download full-text PDF

Source
http://dx.doi.org/10.1002/path.4817DOI Listing

Publication Analysis

Top Keywords

risk loci
12
ibd
9
genetic background
8
background inflammatory
8
inflammatory bowel
8
bowel disease
8
genetic risk
8
causal variants
8
protein function
8
ibd genetic
8

Similar Publications

Systematic druggable genome-wide Mendelian randomization identifies therapeutic targets for hyperemesis gravidarum.

BMC Pregnancy Childbirth

December 2024

Cancer Research Institute, Yunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University, Peking University Cancer Hospital Yunnan, Kunming, 650106, China.

Background: Hyperemesis gravidarum (HG), excessive vomiting in pregnancy, occurs in 0.3-10.8% of pregnancies and is associated with maternal and fetal morbidity.

View Article and Find Full Text PDF

Courses of SARS-CoV-2 infections are highly variable, ranging from asymptomatic to lethal COVID-19. Though research has shown that host genetic factors contribute to this variability, cohort-based joint analyses of variants from the entire allelic spectrum in individuals with confirmed SARS-CoV-2 infections are still lacking. Here, we present the results of whole genome sequencing in 1,220 mainly vaccine-naïve individuals with confirmed SARS-CoV-2 infection, including 827 hospitalized COVID-19 cases.

View Article and Find Full Text PDF

Background: This study explored the associations between plasma and cerebrospinal fluid (CSF) proteins and myocardial infarction (MI) risk. Identifying specific proteins as biomarkers for MI could enhance our understanding of disease mechanisms and inform clinical practice.

Methods: We combined protein quantitative trait loci (pQTL) data for plasma and CSF proteins with genome-wide association study (GWAS) summary statistics for MI.

View Article and Find Full Text PDF

Unlabelled: DNA methylation is an important epigenetic mechanism that helps define and maintain cellular functions. It is influenced by many factors, including environmental exposures, genotype, cell type, sex, and aging. Since age is the primary risk factor for developing neurodegenerative diseases, it is important to determine if aging-related DNA methylation is retained when cells are reprogrammed to an induced Pluripotent Stem Cell (iPSC) state.

View Article and Find Full Text PDF

Background: Lumbar disc degeneration (LDD) is a ubiquitous finding in low back pain. Many different etiology factors may explain the LDD process, such as bone morphogenetic proteins (BMPs), DNA methylation, and gut microbiota. Until recently the mechanisms underlying the LDD process have been elusive.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!

A PHP Error was encountered

Severity: Notice

Message: fwrite(): Write of 34 bytes failed with errno=28 No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 272

Backtrace:

A PHP Error was encountered

Severity: Warning

Message: session_write_close(): Failed to write session data using user defined save handler. (session.save_path: /var/lib/php/sessions)

Filename: Unknown

Line Number: 0

Backtrace: