Chagas disease (CD), caused by the protozoan Trypanosoma cruzi, is a serious public health issue. Its evolution involves an acute stage, characterized by no specific symptoms, and the chronic stage during most individuals are asymptomatic, but about 30-40% of them become symptomatic presenting the cardiac or digestive disease. Host immune response mechanisms involved in symptomatic or asymptomatic chronic disease are not fully understood. The pro-inflammatory cytokines are crucial in host resistance. However, a fine control of this inflammatory process, by action of anti-inflammatory cytokines, is necessary to avoid tissue injury. This control was found to be responsible for no clinical manifestations in asymptomatic individuals. Toll-like receptors (TLRs) are extremely important in defining the cytokine profile released in response to a micro-organism. We found that patients with the cardiac form predominantly released the pro-inflammatory cytokines: IFN-γ, TNF-α and IL-17 with the involvement of both, TLR2 and TLR4. In contrast, patients with asymptomatic disease release predominantly the anti-inflammatory cytokines IL-10 and TGF-β, but also with TLR2 and TLR4 participation. The mechanisms by which stimulation of the same TLRs results in release of different pattern of cytokines, depending on the patients group that is being evaluated, are discussed.

Download full-text PDF

Source
http://dx.doi.org/10.1111/sji.12501DOI Listing

Publication Analysis

Top Keywords

tlr2 tlr4
12
symptomatic asymptomatic
8
asymptomatic chronic
8
chagas disease
8
pro-inflammatory cytokines
8
anti-inflammatory cytokines
8
cytokines
6
asymptomatic
5
disease
5
participation tlr2
4

Similar Publications

Obesity treatment requires an individualized approach, emphasizing the need to identify metabolic pathways of diagnostic relevance. Toll-like receptors (TLRs), particularly TLR2 and TLR4, play a crucial role in metabolic disorders, as receptor deficiencies improves insulin sensitivity and reduces obesity-related inflammation. Additionally, hydrogen sulfide (HS) influences lipolysis, adipogenesis, and adipose tissue browning through persulfidation.

View Article and Find Full Text PDF

Exacerbation of diabetes due to F. Nucleatum LPS-induced SGLT2 overexpression in the renal proximal tubular epithelial cells.

BMC Nephrol

January 2025

Department of Oral Function & Anatomy, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine, 2-5-1 Shikata-cho, Kita- ku, Okayama, 700-0914, Japan.

Background: Diabetes treatments by the control of sodium-glucose cotransporter 2 (SGLT2) is commonly conducted while there are still uncertainties about the mechanisms for the SGLT2 overexpression in kidneys with diabetes. Previously, we have reported that glomeruli and proximal tubules with diabetic nephropathy express toll-like receptor TLR2/4, and that the TLR ligand lipopolysaccharide (LPS) of periodontal pathogens have caused nephropathy in diabetic model mice. Recently, many researchers suggested that the periodontal pathogenic bacteria Fusobacterium (F.

View Article and Find Full Text PDF

Although low-dose lactulose has shown a good theoretical foundation for the treatment of ulcerative colitis (UC) in previous studies, the exact effects and mechanism remain unclear. The rats were randomly distributed into 5 groups, i.e.

View Article and Find Full Text PDF

Dietary fibers (DF) from plant-based foods promote health benefits through their physicochemical properties and fermentation by the gut microbiota, often studied in relation to changes in gut microbiota profile and production of gut microbiota-derived metabolites. Here, we characterized structural motifs (i.e.

View Article and Find Full Text PDF

T-2 toxin triggers immunotoxic effects in goats by inducing ferroptosis and neutrophil extracellular traps.

Toxicol Appl Pharmacol

January 2025

College of Veterinary Medicine, Southwest University, Chongqing 400715, China. Electronic address:

T-2 toxin, a prevalent mycotoxin, represents a notable global public health risk. Neutrophil extracellular traps (NETs) and ferroptosis are involved in a variety of pathophysiological processes and are implicated in goat immunity. However, the impact of T-2 toxin on NETs release, ferroptosis, and their interplay have not been previously documented.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!