Genome Editing Techniques and Their Therapeutic Applications.

Clin Pharmacol Ther

Department of Genetics, Stanford University School of Medicine, Stanford, California, USA.

Published: January 2017

Fueled by advances in the field of genetics, the methods available to edit DNA sequences in living cells have continued to develop steadily. These technologies directly impact the fields of gene and cell therapy, where changes in the DNA sequence of target cells offer a route to correct genetic diseases and manipulate disorders like cancer. We review here the expanding menu of genome editing techniques and how they are being applied to therapeutic targets. The methods encompass a myriad of approaches to modify the covalent structure of DNA, including the targeted creation of double-strand breaks that can catalyze genomic changes, as well as the use of retroviruses and transposons to mediate gene addition, recombinases for sequence-specific gene addition and deletion, and base repair for direct sequence changes. The continued growth of the exciting field of genome editing is opening new possibilities for therapeutic intervention.

Download full-text PDF

Source
http://dx.doi.org/10.1002/cpt.542DOI Listing

Publication Analysis

Top Keywords

genome editing
12
editing techniques
8
gene addition
8
techniques therapeutic
4
therapeutic applications
4
applications fueled
4
fueled advances
4
advances field
4
field genetics
4
genetics methods
4

Similar Publications

Multiplexed assays of variant effect (MAVEs) perform simultaneous characterization of many variants. Prime editing has been recently adopted for introducing many variants in their native genomic contexts. However, robust protocols and standards are limited, preventing widespread uptake.

View Article and Find Full Text PDF

Swine clones: potential application for animal production and animal models.

Anim Reprod

January 2025

Faculdade de Zootecnia e Engenharia de Alimentos - FZEA, Universidade de São Paulo - USP, Pirassununga, SP, Brasil.

Somatic cell nuclear transfer (SCNT), or cloning, is used to reprogram cells and generate genetically identical embryos and animals. However, the cloning process is inefficient, limiting its application to producing valuable animals. In swine, cloning is mainly utilized to produce genetically modified animals.

View Article and Find Full Text PDF

Gene Editing: Developments, Ethical Considerations, and Future Directions.

J Community Hosp Intern Med Perspect

January 2025

University of Pennsylvania, Philadelphia, PA 19104, USA.

An examination of recent developments related to CRISPR technology, ethical considerations of the application of such technologies, and future directions for germline editing.

View Article and Find Full Text PDF

Mitochondrial genome of : features, RNA editing, and insights into male sterility.

Front Plant Sci

January 2025

Bio-resource Research and Utilization Joint Key Laboratory of Sichuan and Chongqing, Chongqing Institute of Medicinal Plant Cultivation, Nanchuan, Chongqing, China.

Introduction: Mitochondria are essential organelles that provide energy for plants. They are semi-autonomous, maternally inherited, and closely linked to cytoplasmic male sterility (CMS) in plants. , a widely used medicinal plant from the Caprifoliaceae family, is rich in chlorogenic acid (CGA) and its analogues, which are known for their antiviral and anticancer properties.

View Article and Find Full Text PDF

Background: Rho GTPases are essential regulators for cellular movement and intracellular membrane trafficking. Their enzymatic activities fluctuate between active GTP-bound and inactive GDP-bound states regulated by GTPase activating proteins (GAPs) and guanine nucleotide exchange factors (GEFs). Arhgap39/Vilse/Porf-2 is a newly identified GAP.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!