Acidithiobacillus ferrivorans is an acidophilic bacterium that represents a substantial proportion of the microbial community in a low temperature mining waste stream. Due to its ability to grow at temperatures below 15 °C, it has previously been classified as 'psychrotolerant'. Low temperature-adapted microorganisms have strategies to grow at cold temperatures such as the production of cold acclimation proteins, DEAD/DEAH box helicases, and compatible solutes plus increasing their cellular membrane fluidity. However, little is known about At. ferrivorans adaptation strategies employed during culture at its temperature extremes. In this study, we report the transcriptomic response of At. ferrivorans SS3 to culture at 8 °C compared to 20 °C. Analysis revealed 373 differentially expressed genes of which, the majority were of unknown function. Only few changes in transcript counts of genes previously described to be cold adaptation genes were detected. Instead, cells cultured at cold (8 °C) altered the expression of a wide range of genes ascribed to functions in transcription, translation, and energy production. It is, therefore, suggested that a temperature of 8 °C imposed little cold stress on At. ferrivorans, underlining its adaptation to growth in the cold as well as suggesting it should be classified as a 'eurypsychrophile'.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5085989 | PMC |
http://dx.doi.org/10.1007/s00792-016-0882-2 | DOI Listing |
Microorganisms
January 2024
Centro de Investigación y Desarrollo en Fermentaciones Industriales (CINDEFI), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), 50 N 288, Calle, La Plata 1900, Buenos Aires, Argentina.
The Amarillo River in Famatina, La Rioja, Argentina, is a natural acidic river with distinctive yellow-ochreous iron precipitates along its course. While mining activities have occurred in the area, the river's natural acidity is influenced by environmental factors beyond mineralogy, where microbial species have a crucial role. Although iron-oxidising bacteria have been identified, a comprehensive analysis of the entire microbial community in this extreme environment has not yet been conducted.
View Article and Find Full Text PDFBioelectrochemistry
August 2023
Facultad de Ingeniería, Arquitectura y Diseño, Universidad San Sebastián, Lientur 1457, Concepción 4080871, Chile. Electronic address:
A new extremophilic isolate (USS-CCA7) was obtained from an acidic environment (pH ∼ 3.2) in Antarctica phylogenetically related to Acidithiobacillus ferrivorans; its electrotrophic capacities were evaluated in a three-electrode electrochemical cell. Cyclic voltammetry showed cathodic peaks of -428 mV, -536 mV, and -634 mV (vs.
View Article and Find Full Text PDFFront Microbiol
March 2023
Goodman School of Mines, Laurentian University, Sudbury, ON, Canada.
Low temperature and acidic environments encompass natural milieus such as acid rock drainage in Antarctica and anthropogenic sites including drained sulfidic sediments in Scandinavia. The microorganisms inhabiting these environments include polyextremophiles that are both extreme acidophiles (defined as having an optimum growth pH < 3), and eurypsychrophiles that grow at low temperatures down to approximately 4°C but have an optimum temperature for growth above 15°C. Eurypsychrophilic acidophiles have important roles in natural biogeochemical cycling on earth and potentially on other planetary bodies and moons along with biotechnological applications in, for instance, low-temperature metal dissolution from metal sulfides.
View Article and Find Full Text PDFFront Microbiol
May 2021
School of Minerals Processing and Bioengineering, Central South University, Changsha, China.
Low-temperature biohydrometallurgy is implicated in metal recovery in alpine mining areas, but bioleaching using microbial consortia at temperatures <10°C was scarcely discussed. To this end, a mixed culture was used for chalcopyrite bioleaching at 6°C. The mixed culture resulted in a higher copper leaching rate than the pure culture of strain YL15.
View Article and Find Full Text PDFCurr Microbiol
April 2021
School of Food Science, Shihezi University, Shihezi, Xinjiang, 832003, People's Republic of China.
The present work reported the complete genome sequence analysis of Acidithiobacillus ferrivorans strain XJFY6S-08 isolated from acid mine drainage in Fuyun copper mine in Xinjiang, China, revealing the potential for extreme environmental adaptation. The strain XJFY6S-08 possesses 3,161,380 bp in length and 56.55% GC content.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!