Theory of optical transitions in curved chromophores.

J Chem Phys

Physical and Theoretical Chemistry Laboratory, Department of Chemistry, University of Oxford, Oxford OX1 3QZ, United Kingdom.

Published: September 2016

Using first order perturbation theory in the Born-Oppenheimer regime of the Frenkel-Holstein model, we develop a theory for the optical transitions in curved chromophores of π-conjugated polymers. Our key results are that for absorption, A, and emission, I, polarized parallel to the 0-0 transition, I/I ≃ A/A = S(N), where S(N) = S(1)/IPR is the effective Huang-Rhys parameter for a chromophore of N monomers and IPR is the inverse participation ratio. In contrast, absorption and emission polarized perpendicular to the 0-0 transition acquires vibronic intensity via the Herzberg-Teller effect. This intensity generally increases as the curvature increases and consequently I/I increases (where I is the total 0-1 emission intensity). This effect is enhanced for long chromophores and in the anti-adiabatic regime. We show via DMRG calculations that this theory works well in the adiabatic regime relevant to π-conjugated polymers, i.e., ħ ω/|J| ≲ 0.2.

Download full-text PDF

Source
http://dx.doi.org/10.1063/1.4962747DOI Listing

Publication Analysis

Top Keywords

theory optical
8
optical transitions
8
transitions curved
8
curved chromophores
8
π-conjugated polymers
8
absorption emission
8
emission polarized
8
0-0 transition
8
theory
4
chromophores order
4

Similar Publications

In this paper, we present a method based on the conjugate image principle and micro-nano optics to detect tilt aberrations of a phased fiber laser array system. A co-aperture optics system was adapted to detect the tilt aberrations of a seven-element phased fiber laser array system simultaneously. A Kepler telescope was designed to construct the conjugate relation between the exit pupil of a fiber optic laser array system and a microlens array and also to match the size of the seven beams and the microlens array.

View Article and Find Full Text PDF

Purpose: To characterize frequency-dependent wave speed dispersion in the human cornea using microliter air-pulse optical coherence elastography (OCE), and to evaluate the applicability of Lamb wave theory for determining corneal elastic modulus using high-frequency symmetric (S0) and anti-symmetric (A0) guided waves in cornea.

Methods: Wave speed dispersion analysis for transient (0.5 ms) microliter air-pulse stimulation was performed in four rabbit eyes ex vivo and compared to air-coupled ultrasound excitation.

View Article and Find Full Text PDF

Phonon modal nonequilibrium is believed to widely exist around nanoscale hotspots, which can significantly affect the performance of nano-electronic and optoelectronic devices. However, such a phenomenon has not been explicitly observed in 3D device semiconductors at the nanoscale. Here, by employing a tip-enhanced Raman thermal measurement approach, substantial phonon nonequilibrium in gallium nitride near sub-10 nm laser-excited hotspots is directly revealed for the first time.

View Article and Find Full Text PDF

We used density functional theory with a hybrid functional to investigate the structure and properties of [4H] (hydrogarnet) defects in -quartz as well as the reactions of these defects with electron holes and extra hydrogen atoms and ions. The results demonstrate the depassivation mechanisms of hydrogen-passivated silicon vacancies in -quartz, providing a detailed understanding of their stability, electronic properties, and behaviour in different charge states. While fully hydrogen passivated silicon vacancies are electrically inert, the partial removal of hydrogen atoms activates these defects as hole traps, altering the defect states and influencing the electronic properties of the material.

View Article and Find Full Text PDF

Effects of Homogeneous Doping on Electron-Phonon Coupling in SrTiO.

Nanomaterials (Basel)

January 2025

Department of Physics and Natural Science Research Institute, University of Seoul, Seoul 02504, Republic of Korea.

Bulk n-type SrTiO (STO) has long been known to possess a superconducting ground state at an exceptionally dilute carrier density. This has raised questions about the applicability of the BCS-Eliashberg paradigm with its underlying adiabatic assumption. However, recent experimental reports have set the pairing gap to the critical temperature (Tc) ratio at the BCS value for superconductivity in Nb-doped STO, even though the adiabaticity condition the BCS pairing requires is satisfied over the entire superconducting dome only by the lowest branch of optical phonons.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!