Image method for induced surface charge from many-body system of dielectric spheres.

J Chem Phys

James Franck Institute and Department of Chemistry, University of Chicago, Chicago, Illinois 60637, USA.

Published: September 2016

Charged dielectric spheres embedded in a dielectric medium provide the simplest model for many-body systems of polarizable ions and charged colloidal particles. We provide a multiple scattering formulation for the total electrostatic energy for such systems and demonstrate that the polarization energy can be rapidly evaluated by an image method that generalizes the image methods for conducting spheres. Individual contributions to the total electrostatic energy are ordered according to the number of polarized surfaces involved, and each additional surface polarization reduces the energy by a factor of (a/R)ϵ, where a is the sphere radius, R the average inter-sphere separation, and ϵ the relevant dielectric mismatch at the interface. Explicit expressions are provided for both the energy and the forces acting on individual spheres, which can be readily implemented in Monte Carlo and molecular dynamics simulations of polarizable charged spheres, thereby avoiding costly computational techniques that introduce a surface charge distribution that requires numerical solution.

Download full-text PDF

Source
http://dx.doi.org/10.1063/1.4962832DOI Listing

Publication Analysis

Top Keywords

image method
8
surface charge
8
dielectric spheres
8
total electrostatic
8
electrostatic energy
8
spheres
5
energy
5
method induced
4
induced surface
4
charge many-body
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!