The evolution of the micro-segregated structure of aqueous methanol mixtures, in the temperature range 300 K-120 K, is studied with computer simulations, from the static structural point of view. The structural heterogeneity of water is reinforced at lower temperatures, as witnessed by a pre-peak in the oxygen-oxygen structure factor. Water tends to form predominantly chain-like clusters at lower temperatures and smaller concentrations. Methanol domains have essentially the same chain-like cluster structure as the pure liquid at high concentrations and becomes monomeric at smaller ones. Concentration fluctuations decrease with temperature, leading to quasi-ideal Kirkwood-Buff integrals, despite the enhanced molecular interactions, which we interpret as the signature of non-interacting segregated water and methanol clusters. This study throws a new light on the nature of the micro-heterogeneous structure of this mixture: the domain segregation is essentially based on the appearance of linear water clusters, unlike other alcohol aqueous mixtures, such as with propanol or butanol, where the water domains are more bulky.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1063/1.4964487 | DOI Listing |
Environ Sci Technol
January 2025
Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences, Uppsala 75651, Sweden.
Per- and polyfluoroalkyl substances (PFAS)-containing firefighting foam have been used in stationary fire suppression systems for several decades. However, there is a lack of research on how to decontaminate PFAS-contaminated infrastructure and evaluate treatment efficiency. This study assessed the removal of PFAS from stainless steel pipe surfaces using different cleaning agents (tap water, methanol, and aqueous solutions containing 10 and 20 wt % of butyl carbitol (BC)) at different temperatures (20 °C, 40 °C, and 70 °C).
View Article and Find Full Text PDFSe Pu
February 2025
Shanghai-MOST Key Laboratory of Health and Disease Genomics, NHC Key Lab of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Shanghai 200237, China.
Thromboxane A (TXA), a prothrombotic factor that induces platelet aggregation and thrombosis, acts as a vasoconstrictor by activating TXA receptors (TP receptors). TXA is extremely unstable and metabolizes into three major metabolites: 2,3-dinor thromboxane B (2,3-dinor-TXB), 11-dehydro TXB(11-dh-TXB), and 11-dehydro-2,3-dinor TXB(11-dh-2,3-dinor-TXB). 8-Iso-prostaglandin F(8-iso-PGF), a prostaglandin-like compound widely considered the best biomarker of oxidative stress, can also activate TP receptors.
View Article and Find Full Text PDFNat Prod Res
January 2025
Nutritional Biochemistry Program, National Institute of Fundamental Studies, Kandy, Sri Lanka.
This study assessed the anti-diabetic potential and bioactive constituents of ten Sri Lankan medicinal herbs. Initial screening of aqueous extracts for starch-digesting enzyme inhibition prioritised three plants with notable activity ( ≤ 0.05), for further assessment using methanolic extracts: (PE), (CA), and (HI).
View Article and Find Full Text PDFAngew Chem Int Ed Engl
January 2025
Seoul National University of Science & Technology, Department of Chemical and Biomolecular Engineering, 232 Gongneung-ro, 01811, Seoul, KOREA, REPUBLIC OF.
Depolymerizing plastic waste through hydrogen-based processes, such as hydrogenolysis and hydrocracking, presents a promising solution for converting plastics into liquid fuels. However, conventional hydrogen production methods rely heavily on fossil fuels, exacerbating global warming. This study introduces a novel approach to plastic waste hydrogenolysis that utilizes in situ hydrogen generated via the aqueous phase reforming (APR) of methanol, a biomass-derived chemical offering a more sustainable alternative.
View Article and Find Full Text PDFJ Chromatogr B Analyt Technol Biomed Life Sci
January 2025
Department of Chemistry, Cleveland State University, Cleveland, OH 44115, USA. Electronic address:
The integrated stress response (ISR) is a cellular defense mechanism activated under stress conditions. When the ISR is activated, it slows the production of proteins, the building blocks that cells need to function. Trans-integrated stress response inhibitor (trans-ISRIB) is a compound that can reverse the effects of ISR activation, showing promise for treating neurodegenerative diseases.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!