Collective concerted motion in a molecular adlayer visualized through the surface diffusion of isolated vacancies.

J Chem Phys

Departamento de Física de la Materia Condensada, Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain.

Published: October 2016

We have measured STM movies to study the diffusion of individual vacancies in a self-assembled layer of a tetrathiafulvalene derivative (exTTF) on Au(111) at room temperature. The diffusion is anisotropic, being faster along the compact direction of the molecular lattice. A detailed analysis of the anisotropic displacement distribution of the single vacancies shows that the relative abundance of double jumps (that is, the collective motion of molecular dimers) with respect to single jumps is rather large, the number of double jumps being more than 20% of the diffusion events. We conjecture that the relative abundances of long jumps might be related to the strength of the intermolecular bonding and the misfit of the molecular overlayer with the substrate lattice.

Download full-text PDF

Source
http://dx.doi.org/10.1063/1.4964862DOI Listing

Publication Analysis

Top Keywords

motion molecular
8
double jumps
8
collective concerted
4
concerted motion
4
molecular
4
molecular adlayer
4
adlayer visualized
4
visualized surface
4
diffusion
4
surface diffusion
4

Similar Publications

Biological activities observed in living systems occur as the output of which nanometer-, submicrometer-, and micrometer-sized structures and tissues non-linearly and dynamically behave through chemical reaction networks, including the generation of various molecules and their assembly and disassembly. To understand the essence of the dynamic behavior in living systems, simpler artificial objects that exhibit cell-like non-linear phenomena have been recently constructed. However, most objects exhibiting cell-like dynamics have been found through trial-and-error experiments, and there are no strategies for designing them as molecular systems.

View Article and Find Full Text PDF

Quantifying the Chirality of Vibrational Modes in Helical Molecular Chains.

Phys Rev Lett

December 2024

Tel Aviv University, University of Pennsylvania, Department of Chemistry, Philadelphia, Pennsylvania 19104, USA and School of Chemistry, Tel Aviv 69978, Israel.

Chiral phonons have been proposed to be involved in various physical phenomena, yet the chirality of molecular normal modes has not been well defined mathematically. Here we examine two approaches for assigning and quantifying the chirality of molecular normal modes in double-helical molecular wires with various levels of twist. First, associating with each normal mode a structure obtained by imposing the corresponding motion on a common origin, we apply the continuous chirality measure (CCM) to quantitatively assess the relationship between the chirality-weighted normal mode spectrum and the chirality of the underlying molecular structure.

View Article and Find Full Text PDF

Purpose: To investigate the failure rate, predictive factors associated with failure and clinical outcomes after a two-stage surgery; meniscus repair followed by subsequent anterior cruciate ligament (ACL) reconstruction (ACLR).

Methods: Patients with a concomitant traumatic meniscus tear and ACL injury who underwent a two-stage surgery between January 2015 and January 2021 were identified. The primary outcome was meniscal repair failure, defined as a reoperation (re-repair or resection).

View Article and Find Full Text PDF

Disrupted nuclear shape is associated with multiple pathological processes including premature aging disorders, cancer-relevant chromosomal rearrangements, and DNA damage. Nuclear blebs (i.e.

View Article and Find Full Text PDF

Proteins often harness extensive motions of domains and subunits to promote their function. Deciphering how these movements impact activity is key for understanding life's molecular machinery. The enzyme adenylate kinase is an intriguing example for this relationship; it ensures efficient catalysis by large-scale domain motions that lead to the enclosure of the bound substrates ATP and AMP.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!