The Discontinuous Galerkin (DG) electronic structure method employs an adaptive local basis (ALB) set to solve the Kohn-Sham equations of density functional theory in a discontinuous Galerkin framework. The adaptive local basis is generated on-the-fly to capture the local material physics and can systematically attain chemical accuracy with only a few tens of degrees of freedom per atom. A central issue for large-scale calculations, however, is the computation of the electron density (and subsequently, ground state properties) from the discretized Hamiltonian in an efficient and scalable manner. We show in this work how Chebyshev polynomial filtered subspace iteration (CheFSI) can be used to address this issue and push the envelope in large-scale materials simulations in a discontinuous Galerkin framework. We describe how the subspace filtering steps can be performed in an efficient and scalable manner using a two-dimensional parallelization scheme, thanks to the orthogonality of the DG basis set and block-sparse structure of the DG Hamiltonian matrix. The on-the-fly nature of the ALB functions requires additional care in carrying out the subspace iterations. We demonstrate the parallel scalability of the DG-CheFSI approach in calculations of large-scale two-dimensional graphene sheets and bulk three-dimensional lithium-ion electrolyte systems. Employing 55 296 computational cores, the time per self-consistent field iteration for a sample of the bulk 3D electrolyte containing 8586 atoms is 90 s, and the time for a graphene sheet containing 11 520 atoms is 75 s.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1063/1.4964861 | DOI Listing |
Data Brief
June 2024
The University of Edinburgh, Bayes Centre, 47 Potterrow, Edinburgh EH8 9BT, Scotland.
In previous work, a Large Eddy Simulation turbulence (LES) algorithm was developed for finite element-based computational fluid dynamics, using a hybrid continuous-discontinuous Galerkin scheme. The test case for this was a backward-facing step, which is a well-known example with published experimental results for validation. The results of this simulation were used to produce temporal statistics, such as averaged velocity and Reynolds stress profiles, and time-series data.
View Article and Find Full Text PDFSci Rep
December 2024
Dept. of Electrical Engineering, Tsinghua University, Beijing, 100084, China.
ACS Omega
November 2024
Department of Mathematics, COMSATS University, Park road, Islamabad 45550, Pakistan.
State-of-the-art computational methods combined with common idealized structural models provide an incomplete understanding of experimental observations on real nanostructures, since manufacturing introduces unavoidable deviations from the design. We propose to close this knowledge gap by using the real structure of a manufactured nanostructure as input in computations to obtain a realistic comparison with measurements on the same nanostructure. We demonstrate this approach on the structure of a real inverse woodpile photonic bandgap crystal made from silicon, as previously obtained by synchrotron X-ray imaging.
View Article and Find Full Text PDFJ Environ Radioact
December 2024
Institute of Mechanics, Material and Civil Engineering, Université Catholique de Louvain, Louvain-la-Neuve, Belgium; Earth and Life Institute, Université Catholique de Louvain, Louvain-la-Neuve, Belgium. Electronic address:
Using the discontinuous Galerkin method in the SLIM modelling framework, we study the transport in the Scheldt basin and adjacent coastal area of radionuclides possibly emitted by Doel nuclear power plant in the aftermath of an accident. The contamination pathways taken into consideration are direct liquid releases into the water and deposition via the atmosphere. In past nuclear accidents, several radionuclides were released, among which, I and Cs were considered herein.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!