Classical density functional theory is applied to investigate the validity of a phenomenological force-balance description of the stability of the Cassie state of liquids on substrates with nanoscale corrugation. A bulk free-energy functional of third order in local density is combined with a square-gradient term, describing the liquid-vapor interface. The bulk free energy is parameterized to reproduce the liquid density and the compressibility of water. The square-gradient term is adjusted to model the width of the water-vapor interface. The substrate is modeled by an external potential, based upon the Lennard-Jones interactions. The three-dimensional calculation focuses on substrates patterned with nanostripes and square-shaped nanopillars. Using both the force-balance relation and density-functional theory, we locate the Cassie-to-Wenzel transition as a function of the corrugation parameters. We demonstrate that the force-balance relation gives a qualitatively reasonable description of the transition even on the nanoscale. The force balance utilizes an effective contact angle between the fluid and the vertical wall of the corrugation to parameterize the impalement pressure. This effective angle is found to have values smaller than the Young contact angle. This observation corresponds to an impalement pressure that is smaller than the value predicted by macroscopic theory. Therefore, this effective angle embodies effects specific to nanoscopically corrugated surfaces, including the finite range of the liquid-solid potential (which has both repulsive and attractive parts), line tension, and the finite interface thickness. Consistently with this picture, both patterns (stripes and pillars) yield the same effective contact angles for large periods of corrugation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1063/1.4963792 | DOI Listing |
Sci Rep
December 2024
Tsung-Dao Lee Institute and School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai, China.
The experimental verification of the Newton law of gravity at small scales has been a longstanding challenge. Recently, torsion balance experiments have successfully measured gravitational force at the millimeter scale. However, testing gravity force on quantum mechanical wave function at small scales remains difficult.
View Article and Find Full Text PDFSci Rep
December 2024
Neuromuscular Research Lab, Interdisciplinary Centre for the study of Human Performance (CIPER), Faculty of Human Kinetics, University of Lisbon, 1499-002, Oeiras, Portugal.
Changes in postural control associated with clinical practice or specific conditions such as the presence of neck pain remain unexplored in dental students. Therefore, this study aimed to explore the time-course changes in postural control complexity among dental students enrolled in clinical practice, comparing those with and without neck pain. We used an online Nordic Musculoskeletal Questionnaire for group allocation and center of pressure (CoP) oscillations with a tri-axial Bertec force plate.
View Article and Find Full Text PDFSci Rep
December 2024
School of Civil Engineering and Architecture, East China Jiaotong University, Nanchang, 330013, Jiangxi, People's Republic of China.
Compared with simple formations, EPB (earth pressure balance) shield tunnelling in composite formations encounters severe problems with muck conditioning and require improved muck conditioning technology to fulfil expectations for continuous and efficient excavation. In the Nanchang Metro Line 4 Project, a water-rich sand-argillaceous siltstone composite formation is encountered. With a high moisture content and complex composite formation ratio, it is quite difficult to determine the optimum muck conditioning scheme, and thus, muck spewing accidents frequently occur during the tunnelling process.
View Article and Find Full Text PDFSci Rep
December 2024
Department of Mathematics, Payame Noor University, Tehran, Iran.
In the realm of petroleum extraction, well productivity declines as reservoirs deplete, eventually reaching a point where continued extraction becomes economically unfeasible. To counteract this, artificial lift techniques are employed, with gas injection being a prevalent method. Ideally, unrestricted gas injection could maximize oil output.
View Article and Find Full Text PDFPLoS One
December 2024
CHU Clermont Ferrand, Plateforme d'Exploration de la Mobilité, Pôle MOBEX, Université Clermont Auvergne, Clermont-Ferrand, France.
Background: In osteoarthritis quadriceps strength is an important outcome to assess exercise capacity and recovery after arthroplasty. However, its measurement is limited due to lack of time and the need for trained personnel and equipment whose accuracy is verified.
Objectives: To find out the determinants of a reduced quadriceps strength and to establish a score to screen for it.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!