Broadband perfect metamaterial absorbers have been drawing significant attention in recent years. A close-to-unity absorption over a broad spectral range is established and this facilitates many photonic applications. A more challenging goal is to construct a broadband absorber with a tailored spectral absorption. The spectral absorption control and spectral shaping are very critical in many applications, such as thermal-photovoltaic, thermal emitters, spectrum imaging system, biomedical and extraterrestrial sensing, and refractive index sensor. In this work, one-dimensional (1D) planar stacking structure is designed to achieve the ultimate goal of a functionalized absorber with a fully tailorable spectral absorption. The lithography and etching process are totally eliminated in this proposed structure, and the fabrication is fully compatible with the regular silicon IC processing. By using ~2 nm ultra-thin metallic layers with a 10-pair (10X) SiO/SiN integrated dielectric filter, we can achieve decent spectral response shaping. The planar configuration of the ultra-thin-metal metamaterial perfect absorber (MPA) is the key to the easy design/integration of the dielectric filters on top of the MPA. Specifically, band-rejected, high-pass, low-pass and band-pass structure are constructed successfully. Finally, experimental evidence to support our simulation result is also provided, which proves the feasibility of our proposal.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5080586 | PMC |
http://dx.doi.org/10.1038/srep36244 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!