Engineered microbes offer a practical and sustainable alternative to traditional industrial approaches. To increase the economic feasibility of biological processes, microbial isolates are engineered to take up inexpensive feedstocks (including lignocellulosic biomass, syngas, methane, and carbon dioxide), and convert them into substrates of central metabolism and further into value-added products. To trace the metabolism of these feedstocks into products, isotopic tracers are applied together with isotopomer analysis techniques such as C-metabolic flux analysis to provide a detailed picture of pathway utilization. Flux data is then integrated with kinetic models and constraint-based approaches to identify metabolic bottlenecks, propose novel metabolic engineering strategies, and improve process performance.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.copbio.2016.10.002 | DOI Listing |
Cattail (), a wetland plant, is emerging as a sustainable materials resource. While most of the species are proven to be a fiber-yielding crop, exhibits the broadest leaf size (5-30 mm), yields highest amount of fiber (≈190.9 g), and captures maximum CO (≈1270 g).
View Article and Find Full Text PDFBioresour Technol
January 2025
Department of Chemical and Biomolecular Engineering, National University of Singapore, S117585, Singapore; Energy and Environmental Sustainability Solutions for Megacities (E2S2) Phase II, Campus for Research Excellence and Technological Enterprise (CREATE), S138602, Singapore. Electronic address:
Pseudomonas putida degraded 35 % of compounds in alkali-pretreated lignin liquor under nitrogen-replete conditions but with low polyhydroxyalkanoates (PHA) production, while limiting nitrogen supplement improved PHA content (PHA/dry cell weight) to 43 % at the expense of decreased lignin degradation of 22 %. Increase of initial cell biomass (0.1-1.
View Article and Find Full Text PDFJ Anim Physiol Anim Nutr (Berl)
January 2025
Department of Animal Science, Wageningen University & Research, Wageningen, The Netherlands.
White rot fungi can degrade lignin and improve the nutritional value of highly lignified biomass for ruminants. We screened for excellent fungi-biomass combinations by investigating the improvement of digestibility of wheat straw, barley straw, oat straw, rapeseed straw, miscanthus, new reed, spent reed from thatched roofs, and cocoa shells after colonisation by Ceriporiopsis subvermispora (CS), Lentinula edodes (LE), and Pleurotus eryngii (PE) (indicated by increased in vitro gas production [IVGP]). First, growth was evaluated for three fungi on all types of biomass, over a period of 17 days in race tubes.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
Beijing Key Laboratory of Lignocellulosic Chemistry, and Engineering Research Center of Forestry Biomass Materials and Energy, Ministry of Education, Beijing Forestry University, Beijing 100083, China. Electronic address:
Appl Biochem Biotechnol
January 2025
Department of Botany, Maharshi Dayanand University, Rohtak, 124001, India.
Cellulase was effectively immobilized onto an epoxy-bound chitosan-modified zinc metal-organic framework (epoxy/ZIF-8/CS/cellulase) support, yielding a conjugation rate of 0.64 ± 0.02 mg/cm2 and retaining 80.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!