5'-Methylthioadenosine phosphorylase (MTAP) and 5'-methylthioadenosine nucleosidase (MTAN) catalyze the phosphorolysis and hydrolysis of 5'-methylthioadenosine (MTA), respectively. Both enzymes have low K values for their substrates. Kinetic assays for these enzymes are challenging, as the ultraviolet absorbance spectra for reactant MTA and product adenine are similar. We report a new assay using 2-amino-5'-methylthioadenosine (2AMTA) as an alternative substrate for MTAP and MTAN enzymes. Hydrolysis or phosphorolysis of 2AMTA forms 2,6-diaminopurine, a fluorescent and easily quantitated product. We kinetically characterize 2AMTA with human MTAP, bacterial MTANs and use 2,6-diaminopurine as a fluorescent substrate for yeast adenine phosphoribosyltransferase. 2AMTA was used as the substrate to kinetically characterize the dissociation constants for three-transition-state analogue inhibitors of MTAP and MTAN. Kinetic values obtained from continuous fluorescent assays with MTA were in good agreement with previously measured literature values, but gave smaller experimental errors. Chemical synthesis from ribose and 2,6-dichloropurine provided crystalline 2AMTA as the oxalate salt. Chemo-enzymatic synthesis from ribose and 2,6-diaminopurine produced 2-amino-S-adenosylmethionine for hydrolytic conversion to 2AMTA. Interaction of 2AMTA with human MTAP was also characterized by pre-steady-state kinetics and by analysis of the crystal structure in a complex with sulfate as a catalytically inert analogue of phosphate. This assay is suitable for inhibitor screening by detection of fluorescent product, for quantitative analysis of hits by rapid and accurate measurement of inhibition constants in continuous assays, and pre-steady-state kinetic analysis of the target enzymes.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5434977 | PMC |
http://dx.doi.org/10.1021/acs.analchem.6b03621 | DOI Listing |
J Med Chem
April 2019
Ferrier Research Institute , Victoria University of Wellington, Wellington 5040 , New Zealand.
Bacterial 5'-methylthioadenosine/ S-adenosylhomocysteine nucleosidase (MTAN) hydrolyzes adenine from its substrates to form S-methyl-5-thioribose and S-ribosyl-l-homocysteine. MTANs are involved in quorum sensing, menaquinone synthesis, and 5'-methylthioadenosine recycling to S-adenosylmethionine. Helicobacter pylori uses MTAN in its unusual menaquinone pathway, making H.
View Article and Find Full Text PDFAnal Chem
December 2016
Department of Biochemistry, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, New York 10461, United States.
5'-Methylthioadenosine phosphorylase (MTAP) and 5'-methylthioadenosine nucleosidase (MTAN) catalyze the phosphorolysis and hydrolysis of 5'-methylthioadenosine (MTA), respectively. Both enzymes have low K values for their substrates. Kinetic assays for these enzymes are challenging, as the ultraviolet absorbance spectra for reactant MTA and product adenine are similar.
View Article and Find Full Text PDFBioorg Med Chem
September 2012
Carbohydrate Chemistry, Industrial Research Limited, PO Box 31310, Lower Hutt 5040, New Zealand.
Several acyclic hydroxy-methylthio-amines with 3-5 carbon atoms were prepared and coupled via a methylene link to 9-deazaadenine. The products were tested for inhibition against human MTAP and Escherichia coli and Neisseria meningitidis MTANs and gave K(i) values as low as 0.23 nM.
View Article and Find Full Text PDFJ Med Chem
September 2010
Carbohydrate Chemistry Team, Industrial Research Limited, P.O. Box 31310, Lower Hutt, New Zealand.
5'-Methylthioadenosine/S-adenosylhomocysteine nucleosidase (MTAN) is a dual substrate bacterial enzyme involved in S-adenosylmethionine (SAM) related quorum sensing pathways that regulates virulence in many bacterial species. MTANs from many bacteria are directly involved in the quorum sensing mechanism by regulating the synthesis of autoinducer molecules that are used by bacterial communities to communicate. In humans, 5'-methylthioadenosine phosphorylase (MTAP) is involved in polyamine biosynthesis as well as in purine and SAM salvage pathways and thus has been identified as an anticancer target.
View Article and Find Full Text PDFNucleic Acids Symp Ser (Oxf)
November 2010
Albert Einstein College of Medicine, Bronx, New York, NY 10805, USA.
Transition state structures can be derived from kinetic isotope effects and computational chemistry. Molecular electrostatic potential maps of transition states serve as blueprints to guide synthesis of transition state analogue inhibitors of target enzymes. 5'- Methylthioadenosine phosphorylase (MTAP) functions in the polyamine pathway by recycling methylthioadenosine (MTA) and maintaining cellular S-adenosylmethionine (SAM).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!