An ultrasensitive and highly efficient assay for real-time monitoring of nitric oxide (NO) at single-cell level based on a reduced graphene oxide (RGO) and iron-porphyrin-functionalized graphene (FGPCs) field-effect transistor (FET) biosensor is reported. A layer-to-layer assembly of RGO and FGPCs on a prefabricated FET sensor surface through π-π stacking interaction allowed superior electrical conductivity caused by RGO, and highly catalytic specificity induced by metalloporphyrin, ensuring the ultrasensitive and highly specific detection of NO. The results demonstrated that the RGO/FGPCs FET biosensor was capable of real-time monitoring of NO in the range from 1 pM to 100 nM with the limit of detection as low as 1 pM in phosphate-buffered saline (PBS) and 10 pM in the cell medium, respectively. Moreover, the developed biosensor could be used for real-time monitoring of NO released from human umbilical vein endothelial cells (HUVECs) at single-cell level. Along with its miniaturized sizes, ultrasensitive characteristics, and fast response, the FET biosensor is promising as a new platform for potential biological and diagnostic applications.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.analchem.6b03208DOI Listing

Publication Analysis

Top Keywords

real-time monitoring
16
single-cell level
12
fet biosensor
12
monitoring nitric
8
nitric oxide
8
oxide single-cell
8
field-effect transistor
8
ultrasensitive highly
8
biosensor
5
real-time
4

Similar Publications

Background: Patients with lung adenocarcinoma (LUAD) receiving drug treatment often have an unpredictive response and there is a lack of effective methods to predict treatment outcome for patients. Dendritic cells (DCs) play a significant role in the tumor microenvironment and the DCs-related gene signature may be used to predict treatment outcome. Here, we screened for DC-related genes to construct a prognostic signature to predict prognosis and response to immunotherapy in LUAD patients.

View Article and Find Full Text PDF

System-level wearable electronics require to be flexible to ensure conformal contact with the skin, but they also need to integrate rigid and bulky functional components to achieve system-level functionality. As one of integration methods, folding integration offers simplified processing and enhanced functionality through rigid-soft region separation, but so far, it has mainly been applied to modality of electrical sensing and stimulation. This paper introduces a vialess heterogeneous skin patch with multi modalities that separates the soft region and strain-robust region through folded structure.

View Article and Find Full Text PDF

MRI-Based Multifunctional Nanoliposomes for Enhanced HCC Therapy and Diagnosis.

Mol Pharm

January 2025

Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji 133002, China.

The morbidity and mortality rates of hepatocellular carcinoma (HCC) are high and continue to increase. The antitumor effects of single therapies are limited because of tumor heterogeneity and drug resistance, and the lack of real-time monitoring of tumor progression during the treatment process leads to poor therapeutic outcomes. Therefore, novel nanodelivery platforms combining tumor therapy and diagnosis have garnered extensive attention.

View Article and Find Full Text PDF

Left ventricular systolic dysfunction (LVSD) and its severity are correlated with the prognosis of cardiovascular diseases. Early detection and monitoring of LVSD are of utmost importance. Left ventricular ejection fraction (LVEF) is an essential indicator for evaluating left ventricular function in clinical practice, the current echocardiography-based evaluation method is not avaliable in primary care and difficult to achieve real-time monitoring capabilities for cardiac dysfunction.

View Article and Find Full Text PDF

Bioinspired bicontinuous adhesive hydrogel for wearable strain sensor with high sensitivity and a wide working range.

J Colloid Interface Sci

January 2025

Key Laboratory for Soft Chemistry and Functional Materials of Ministry of Education, Nanjing University of Science and Technology, Nanjing 210094 China. Electronic address:

Conductive hydrogel strain sensors demonstrate extensive potential in artificial robotics, human-computer interaction, and health monitoring, owing to their excellent flexibility and biocompatibility. Wearable strain sensors for real-time monitoring of human activities require hydrogels with self-adhesion, desirable sensitivity, and wide working range. However, balancing the high sensitivity and a wide working range remains a challenge.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!