A graphene oxide conductive hydrogel is reported that simultaneously possesses high toughness, self-healability, and self-adhesiveness. Inspired by the adhesion behaviors of mussels, our conductive hydrogel shows self-adhesiveness on various surfaces and soft tissues. The hydrogel can be used as self-adhesive bioelectronics, such as electrical stimulators to regulate cell activity and implantable electrodes for recording in vivo signals.

Download full-text PDF

Source
http://dx.doi.org/10.1002/smll.201601916DOI Listing

Publication Analysis

Top Keywords

conductive hydrogel
8
mussel-inspired conductive
4
conductive self-adhesive
4
self-adhesive self-healable
4
self-healable tough
4
hydrogel
4
tough hydrogel
4
hydrogel cell
4
cell stimulators
4
stimulators implantable
4

Similar Publications

One of the most frequently impacted locations by psoriasis is the scalp. It is seen in about 80% of psoriasis cases worldwide, and its treatment is challenging. To compare the efficacy and safety of excimer light versus topical methotrexate (MTX) 1% hydrogel in treatment of scalp psoriasis.

View Article and Find Full Text PDF

Peripheral nerve injury (PNI) as a common clinical issue that presents significant challenges for repair. Factors such as donor site morbidity from autologous transplantation, slow recovery of long-distance nerve damage, and deficiencies in local cytokines and extracellular matrix contribute to the complexity of effective PNI treatment. It is extremely urgent to develop functional nerve guidance conduits (NGCs) as substitutes for nerve autografts.

View Article and Find Full Text PDF

The extracellular matrix (ECM) and its primary chemical components, including collagen, play a pivotal role in carcinogenesis and tumor progression. The ECM actively regulates cell proliferation, migration, and, importantly, resistance to various adverse factors. It is widely recognized as a key factor in modifying the resistance of tumor cells to various treatment modalities and cytotoxic compounds.

View Article and Find Full Text PDF

Hydrogel coils in intracranial aneurysm treatment: a multicenter, prospective, randomized open-label trial.

J Neurosurg

January 2025

19Division of Medical Statistics, Division of Data Science, Foundation for Biomedical Research and Innovation at Kobe; and.

Objective: Studies have demonstrated the effectiveness of hydrogel-coated coils (HGCs) to achieve the composite endpoint of decreased recanalization rates and greater safety. Herein, the authors aimed to assess the true ability of second-generation HGCs to prevent recanalization.

Methods: This randomized controlled study, the HYBRID (Hydrocoil Versus Bare Platinum Coil in Recanalization Imaging Data) trial, comparing HGCs with bare platinum coils (BPCs), was conducted in 43 Japanese institutions.

View Article and Find Full Text PDF

Eutectogels are recently emerged as promising alternatives to hydrogels owing to their good environmental stability derived from deep eutectic solvents (DES). However, construction of competent eutectogels with both high conductivity and mechanical toughness is still difficult to achieve yet highly demanded. In this work, new LMNP-PEDOT-CMC-AA (LPCA) eutectogels are prepared using acrylic acid (AA) and carboxymethylcellulose sodium (CMC) as polymeric networks, liquid metal nanoparticle-poly(3,4-ethylenedioxythiophene) (LMNP-PEDOT) are added as multifunctional soft fillers.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!