Key Points: Increase in blood pressure in the renal afferent arteriole is known to induce an increase in cytosolic calcium concentration ([Ca ] ) of juxtaglomerular (JG) cells and to result in a decreased secretion of renin. Mechanical stimulation of As4.1 JG cells induces an increase in [Ca ] that is inhibited by HC067047 and RN1734, two inhibitors of TRPV4, or by siRNA-mediated repression of TRPV4. Inhibition of TRPV4 impairs pressure-induced decrease in renin secretion. Compared to wild-type mice, Trpv4 mice present increased resting plasma levels of renin and aldosterone and present a significantly altered pressure-renin relationship. We suggest that TRPV4 channel participates in mechanosensation at the juxtaglomerular apparatus.
Abstract: The renin-angiotensin system is a crucial blood pressure regulation system. It consists of a hormonal cascade where the rate-limiting enzyme is renin, which is secreted into the blood flow by renal juxtaglomerular (JG) cells in response to low pressure in the renal afferent arteriole. In contrast, an increase in blood pressure results in a decreased renin secretion. This is accompanied by a transitory increase in [Ca ] of JG cells. The inverse relationship between [Ca ] and renin secretion has been called the 'calcium paradox' of renin release. How increased pressure induces a [Ca ] transient in JG cells, is however, unknown. We observed that [Ca ] transients induced by mechanical stimuli in JG As4.1 cells were completely abolished by HC067047 and RN1734, two inhibitors of TRPV4. They were also reduced by half by siRNA-mediated repression of TRPV4 but not after repression or inhibition of TRPV2 or Piezo1 ion channels. Interestingly, the stimulation of renin secretion by the adenylate cyclase activator forskolin was totally inhibited by cyclic stretching of the cells. This effect was mimicked by stimulation with GSK1016790A and 4αPDD, two activators of TRPV4 and inhibited in the presence of HC067047. Moreover, in isolated perfused kidneys from Trpv4 mice, the pressure-renin relationship was significantly altered. In vivo, Trpv4 mice presented increased plasma levels of renin and aldosterone compared to wild-type mice. Altogether, our results suggest that TRPV4 is involved in the pressure-induced entry of Ca in JG cells, which inhibits renin release and allows the negative feedback regulation on blood pressure.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5157090 | PMC |
http://dx.doi.org/10.1113/JP273595 | DOI Listing |
Int J Gen Med
January 2025
Division of Endocrinology and Metabolism, Chang Gung Memorial Hospital at Linkou, Taoyuan City, Taiwan.
Purpose: Glucose metabolism is associated with several endocrine disorders. Anti-diabetes drugs are crucial in controlling diabetes and its complications; nevertheless, few studies have been carried out involving endocrine function. This study aimed to investigate the association between anti-diabetes drugs and endocrine parameters.
View Article and Find Full Text PDFNat Chem Biol
January 2025
Department of Chemical Engineering, Stanford University, Stanford, CA, USA.
Synthetic circuits that regulate protein secretion in human cells could support cell-based therapies by enabling control over local environments. Although protein-level circuits enable such potential clinical applications, featuring orthogonality and compactness, their non-human origin poses a potential immunogenic risk. In this study, we developed Humanized Drug Induced Regulation of Engineered CyTokines (hDIRECT) as a platform to control cytokine activity exclusively using human-derived proteins.
View Article and Find Full Text PDFCurr Hypertens Rep
January 2025
Department of Pharmacy, The Second Clinical Medical College, The First Affiliated Hospital, Shenzhen People's Hospital, Jinan University, Southern University of Science and Technology), Shenzhen, China.
Purpose Of Review: To review currently existing knowledge on a new type of antihypertensive treatment, small interfering RNA (siRNA) targeting hepatic angiotensinogen.
Recent Findings: Targeting angiotensinogen synthesis in the liver with siRNA allows reaching a suppression of renin-angiotensin system (RAS) activity for up to 6 months after 1 injection. This might revolutionize antihypertensive treatment, as it could overcome non-adherence, the major reason for inadequate blood pressure control.
NPJ Syst Biol Appl
January 2025
BIH Center for Regenerative Therapies (BCRT), Julius Wolff Institute (JWI), and Berlin Institute of Health (BIH); all Charité Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health (BIH), 10117, Berlin, Germany.
Coronavirus disease 2019 (COVID-19) presents a wide spectrum of symptoms, the causes of which remain poorly understood. This study explored the associations between autoantibodies (AABs), particularly those targeting G protein-coupled receptors (GPCRs) and renin‒angiotensin system (RAS) molecules, and the clinical manifestations of COVID-19. Using a cross-sectional analysis of 244 individuals, we applied multivariate analysis of variance, principal component analysis, and multinomial regression to examine the relationships between AAB levels and key symptoms.
View Article and Find Full Text PDFAdipocyte
December 2025
Department of Pediatrics, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan.
Obesity is a global health concern that promotes chronic low-grade inflammation, leading to insulin resistance, a key factor in many metabolic diseases. Angiotensin 1-7 (Ang 1-7), a component of the renin-angiotensin system (RAS), exhibits anti-inflammatory effects in obesity and related disorders, though its mechanisms remain unclear. In this study, we examined the effect of Ang 1-7 on inflammation of white adipose tissue (WAT) in dietary-induced obese mice.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!