Carbon dioxide (CO )-responsive polymer nano-objects are prepared by photoinitiated reversible addition-fragmentation chain transfer dispersion polymerization of 2-hydroxypropyl methacrylate and 2-(dimethylamino)ethyl methacrylate (DMAEMA) in water at room temperature using a poly(poly(ethylene glycol) methyl ether methacrylate) macromolecular chain transfer agent. Kinetic studies confirm that full monomer conversions are achieved in all cases within 10 min of visible-light irradiation (405 nm, 0.5 mW cm ). The effect of DMAEMA on the polymerization is studied in detail, and pure higher order morphologies (worms and vesicles) are prepared by this particular formulation. Finally, CO -responsive property of the obtained vesicles is investigated by dynamic light scattering, visual appearance, and transmission electron microscope.

Download full-text PDF

Source
http://dx.doi.org/10.1002/marc.201600508DOI Listing

Publication Analysis

Top Keywords

-responsive polymer
8
polymer nano-objects
8
chain transfer
8
facile preparation
4
preparation -responsive
4
nano-objects aqueous
4
aqueous photoinitiated
4
photoinitiated polymerization-induced
4
polymerization-induced self-assembly
4
self-assembly photo-pisa
4

Similar Publications

Contribution of Blood Biomarkers to Multiple Sclerosis Diagnosis.

Neurol Neuroimmunol Neuroinflamm

March 2025

Servei de Neurologia, Centre d'Esclerosi Múltiple de Catalunya (Cemcat), Institut de Recerca Vall d'Hebron (VHIR), Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona, Barcelona, Spain.

Background And Objectives: Invasive procedures may delay the diagnostic process in multiple sclerosis (MS). We investigated the added value of serum neurofilament light chain (sNfL), glial fibrillary acidic protein (sGFAP), chitinase-3-like 1 (sCHI3L1), and the immune responses to the Epstein-Barr virus-encoded nuclear antigen 1 to current MS diagnostic criteria.

Methods: In this multicentric study, we selected patients from 2 prospective cohorts presenting a clinically isolated syndrome (CIS).

View Article and Find Full Text PDF

Reactive oxygen species (ROS)-sensitive polymers are extensively used in cancer therapies. However, the ROS levels in the tumor microenvironment are often insufficient to trigger an adequate therapeutic response. Herein, we report a cinnamaldehyde ()-based ROS-responsive cationic polymer () and demonstrate its high efficiency in gene delivery and tumor cell growth inhibition.

View Article and Find Full Text PDF

Bioinspired Antiswelling Hydrogel Sensors with High Strength and Rapid Self-Recovery for Underwater Information Transmission.

ACS Appl Mater Interfaces

January 2025

School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China.

Hydrogel-based sensors typically demonstrate conspicuous swelling behavior in aqueous environments, which can severely compromise the mechanical integrity and distort sensing signals, thereby considerably constraining their widespread applicability. Drawing inspiration from the multilevel heterogeneous structures in biological tissues, an antiswelling hydrogel sensor endowed with high strength, rapid self-recovery, and low swelling ratio was fabricated through a water-induced phase separation and coordination cross-linking strategy. A dense heterogeneous architecture was developed by the integration of "rigid" quadridentate carboxyl-Zr coordination bonds and "soft" hydrophobic unit-rich regions featuring π-π stacking and cation-π interactions into the hydrogels.

View Article and Find Full Text PDF

The 55-carbon isoprenoid, undecaprenyl-phosphate (UndP), is a universal carrier lipid that ferries most glycans and glycopolymers across the cytoplasmic membrane in bacteria. In addition to peptidoglycan precursors, UndP transports O-antigen, capsule, wall teichoic acids, and sugar modifications. How this shared but limited lipid is distributed among competing pathways is just beginning to be elucidated.

View Article and Find Full Text PDF

Current views and trends of nanomaterials as vectors for gene delivery since the 21st century: a bibliometric analysis.

Nanomedicine (Lond)

January 2025

Department of Orthopedic, Spinal Pain Research Institute, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China.

Background: Gene therapy is garnering increasing support due to its potential for a "once-delivered, lifelong benefit." The limitations of traditional gene delivery methods have spurred the advancement of bionanomaterials. Despite this progress, a thorough analysis of the evolution, current state, key contributors, focal studies, and future directions of nanomaterials in gene delivery remains absent.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!