Icariin protects against MPP-induced neurotoxicity in MES23.5 cells.

Sheng Li Xue Bao

Department of Physiology, Shandong Provincial Collaborative Innovation Center for Neurodegenerative Disorders, Medical College of Qingdao University, Qingdao 266071, China.

Published: October 2016

Icariin is the major bioactive component of Epimedium and has been demonstrated to be a potential drug for age-related diseases. The present study was aimed to investigate the neuroprotective properties of icariin against 1-methyl-4-phenylpyridinium ion (MPP)-induced neurotoxicity in MES23.5 cells and the possible mechanisms. MTT assay showed that treatment with MPP attenuated the cell viability in a dose-dependent manner in MES23.5 cells. Icariin pretreatment resulted in an enhancement of survival. Immunocytochemistry analysis revealed that icariin treatment attenuated MPP-induced loss of tyrosine hydroxylase (TH) positive cells. Meanwhile, Western blot confirmed MPP significantly decreased the TH protein expression, and icariin pretreatment could reverse the toxic effect of MPP. Moreover, flow cytometry showed that MPP-induced decrease of the mitochondrial membrane potential could be partly restored by icariin. Furthermore, real-time RT-PCR and Western blot analysis demonstrated that icariin treatment restored the MPP-induced up-regulation of Bax and down-regulation of Bcl-2 mRNA and protein expressions. Western blot data also revealed the inhibitory effect of icariin on MPP-induced up-regulation of cleaved caspase-3. These findings provide the evidence that icariin has neuroprotective properties against MPP-induced neurotoxicity in MES23.5 cells and the mechanism might be related to the anti-apoptotic action of icariin.

Download full-text PDF

Source

Publication Analysis

Top Keywords

mes235 cells
16
mpp-induced neurotoxicity
12
neurotoxicity mes235
12
western blot
12
icariin
11
cells icariin
8
neuroprotective properties
8
icariin pretreatment
8
icariin treatment
8
mpp-induced up-regulation
8

Similar Publications

The efficacy of photodynamic treatment (PDT) against deep-seated tumor is hindered by low penetration depth of light as well as hypoxic conditions which prevails in tumor. To overcome this limitation, Near-infrared (NIR) absorbing photosensitizers have been investigated actively. In the present study we evaluated the PDT efficacy of an NIR absorbing chlorophyll derivative 'Cycloimide Purpurin-18 (CIPp-18)' in Human Breast carcinoma (MCF-7) and cervical adenocarcinoma (Hela) cells under normoxic and hypoxic conditions.

View Article and Find Full Text PDF

Liver cancer poses a global health challenge with limited therapeutic options. Notably, the limited success of current therapies in patients with primary liver cancers (PLCs) may be attributed to the high heterogeneity of both hepatocellular carcinoma (HCCs) and intrahepatic cholangiocarcinoma (iCCAs). This heterogeneity evolves over time as tumor-initiating stem cells, or cancer stem cells (CSCs), undergo (epi)genetic alterations or encounter microenvironmental changes within the tumor microenvironment.

View Article and Find Full Text PDF

TRPV4 as a Novel Regulator of Ferroptosis in Colon Adenocarcinoma: Implications for Prognosis and Therapeutic Targeting.

Dig Dis Sci

January 2025

Ningxia Medical University, Xing Qing Block, Shengli Street No.1160, Yin Chuan City, 750004, Ningxia Province, People's Republic of China.

Background: Colon adenocarcinoma (COAD) is a leading cause of cancer-related mortality worldwide. Transient receptor potential vanilloid 4 (TRPV4), a calcium-permeable non-selective cation channel, has been implicated in various cancers, including COAD. This study investigates the role of TRPV4 in colon adenocarcinoma and elucidates its potential mechanism via the ferroptosis pathway.

View Article and Find Full Text PDF

Backbone resonance assignments of PhoCl, a photocleavable protein.

Biomol NMR Assign

January 2025

High Magnetic Field Laboratory, Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, China.

PhoCl is a photocleavable protein engineered from a green-to-red photoconvertible fluorescent protein by circular permutation, and has been used in various optogenetic applications including precise control of protein localization and activity in cells. Upon violet light illumination, PhoCl undergoes a β-elimination reaction to be cleaved at the chromophore, resulting in spontaneous dissociation into a large empty barrel and a small C-terminal peptide. However, the structural determinants and the mechanism of the PhoCl photocleavage remain elusive, hindering the further development of more robust photocleavable optogenetic tools.

View Article and Find Full Text PDF

Objective: Rheumatoid arthritis (RA) is an autoimmune condition that causes severe joint deformities and impaired functionality, affecting the well-being and daily life of individuals. Consequently, there is a pressing demand for identifying viable therapeutic targets for treating RA. This study aimed to explore the molecular mechanisms of osteoclast differentiation in PBMC from patients with RA through transcriptome sequencing and bioinformatics analysis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!