Pharmacological outcome and a certain side effects of therapeutic drugs generally depend on concentration of the drugs and/or their active metabolites in the body. Physiologically-based pharmacokinetics is quantitative tool to understand the drug concentration in the body. Drug efficacy is sometimes affected by subjective factors and cannot be clearly quantified. Even in such cases, it could be possible to quantitatively understand possible pharmacological events occurred in the patients by understanding pharmacokinetics of the corresponding drug. Here, we have attempted to summarize the basis of physiologically-based pharmacokinetics to understand which factors will determine drug concentration in the body and how to predict/speculate the drug concentration in the body in a quantitative manner. For easier understanding by the readers, we introduce some examples of pharmacokinetic property of several osteoporosis drugs.
Download full-text PDF |
Source |
---|
Clin Pharmacokinet
January 2025
Clinical Pharmacology and Toxicology Service, Anesthesiology, Pharmacology and Intensive Care Department, Geneva University Hospitals, 4 Rue Gabrielle Perret-Gentil, 1205, Geneva, Switzerland.
Background And Objective: Fexofenadine is commonly used as a probe substrate to assess P-glycoprotein (Pgp) activity. While its use in healthy volunteers is well documented, data in older adult and polymorbid patients are lacking. Age- and disease-related physiological changes are expected to affect the pharmacokinetics of fexofenadine.
View Article and Find Full Text PDFFish Physiol Biochem
January 2025
Department of Biological Sciences, College of Science, University of Jeddah, P.O. Box 80327, Jeddah 21589, Saudi Arabia.
High cadmium (Cd) concentrations pose a threat to aquatic life globally. This study examined the efficiency of adding purslane (Portulaca oleracea L.) leaf powder (PLP) to Oreochromis niloticus diets on Cd's negative effects.
View Article and Find Full Text PDFInflamm Res
January 2025
Department of Nephrology, First Affiliated Hospital of Naval Medical University, Shanghai Changhai Hospital, Shanghai, China.
Background: Chronic inflammation is well recognized as a key factor related to renal function deterioration in patients with diabetic kidney disease (DKD). Neutrophil extracellular traps (NETs) play an important role in amplifying inflammation. With respect to NET-related genes, the aim of this study was to explore the mechanism of DKD progression and therefore identify potential intervention targets.
View Article and Find Full Text PDFBiomed Chromatogr
February 2025
College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, China.
Gualou-Xiebai-Banxia (GXB) decoction shows potential for treating myocardial ischemia (MI), although its underlying mechanism is not fully understood. In this study, a multimodal metabolomics approach, combining gas chromatography-mass spectrometry (GC-MS) and H-NMR, was employed to investigate the cardioprotective effects of GXB in a rat model of myocardial ischemia induced by ligation. ELISA assays and HE staining demonstrated that GXB effectively reduced myocardial injury, oxidative stress markers, and myocardial fibrosis.
View Article and Find Full Text PDFJ Clin Med
December 2024
Pharmacy Department, Institut Català Oncologia (ICO), Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), L'Hospitalet Llobregat, 08908 Barcelona, Spain.
Everolimus, an oral inhibitor of the mammalian target of rapamycin (mTOR), is actually used to prevent organ transplant rejection and treat metastatic breast, renal, and neuroendocrine cancers. Despite significant pharmacokinetic variability among patients, routine therapeutic drug monitoring (TDM) is not commonly used in oncology. The aim of this multicenter, prospective observational cohort study is to assess the prevalence of everolimus minimum concentration at a steady state (Cminss) falling outside the therapeutic range (10-26.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!