AMP-Activated Protein Kinase α2 in Neutrophils Regulates Vascular Repair via Hypoxia-Inducible Factor-1α and a Network of Proteins Affecting Metabolism and Apoptosis.

Circ Res

From the Institute for Vascular Signaling, Centre for Molecular Medicine (R.A.M., N.Z., T.F., S.Z., B.F., I.F.), Functional Proteomics, SFB 815 Core Unit, Faculty of Medicine (J.H., I.W.), ECCPS Metabolomics Facility, Institute for Vascular Signaling, Centre for Molecular Medicine (S.Z.), Department of Hematology/Oncology (S.W., M.A.R.), and Buchmann Institute for Molecular Life Sciences (N.A., F.P.), Goethe University, Frankfurt am Main, Germany; German Center of Cardiovascular Research (DZHK), Partner site Rhein-Main, Frankfurt am Main, Germany (R.A.M., T.F., J.H., S.Z., B.F., I.F.); and Walter-Brendel-Centre of Experimental Medicine, Department of Cardiovascular Physiology and Pathophysiology, Ludwig Maximilians University, Munich, Germany (B.W.).

Published: January 2017

Rationale: The AMP-activated protein kinase (AMPK) is stimulated by hypoxia, and although the AMPKα1 catalytic subunit has been implicated in angiogenesis, little is known about the role played by the AMPKα2 subunit in vascular repair.

Objective: To determine the role of the AMPKα2 subunit in vascular repair.

Methods And Results: Recovery of blood flow after femoral artery ligation was impaired (>80%) in AMPKα2 versus wild-type mice, a phenotype reproduced in mice lacking AMPKα2 in myeloid cells (AMPKα2). Three days after ligation, neutrophil infiltration into ischemic limbs of AMPKα2 mice was lower than that in wild-type mice despite being higher after 24 hours. Neutrophil survival in ischemic tissue is required to attract monocytes that contribute to the angiogenic response. Indeed, apoptosis was increased in hypoxic neutrophils from AMPKα2 mice, fewer monocytes were recruited, and gene array analysis revealed attenuated expression of proangiogenic proteins in ischemic AMPKα2 hindlimbs. Many angiogenic growth factors are regulated by hypoxia-inducible factor, and hypoxia-inducible factor-1α induction was attenuated in AMPKα2-deficient cells and accompanied by its enhanced hydroxylation. Also, fewer proteins were regulated by hypoxia in neutrophils from AMPKα2 mice. Mechanistically, isocitrate dehydrogenase expression and the production of α-ketoglutarate, which negatively regulate hypoxia-inducible factor-1α stability, were attenuated in neutrophils from wild-type mice but remained elevated in cells from AMPKα2 mice.

Conclusions: AMPKα2 regulates α-ketoglutarate generation, hypoxia-inducible factor-1α stability, and neutrophil survival, which in turn determine further myeloid cell recruitment and repair potential. The activation of AMPKα2 in neutrophils is a decisive event in the initiation of vascular repair after ischemia.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5213742PMC
http://dx.doi.org/10.1161/CIRCRESAHA.116.309937DOI Listing

Publication Analysis

Top Keywords

hypoxia-inducible factor-1α
16
ampkα2
12
wild-type mice
12
ampkα2 mice
12
amp-activated protein
8
protein kinase
8
vascular repair
8
ampkα2 subunit
8
subunit vascular
8
cells ampkα2
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!