A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@remsenmedia.com&api_key=81853a771c3a3a2c6b2553a65bc33b056f08&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Physiological and molecular responses of juvenile shortnose sturgeon (Acipenser brevirostrum) to thermal stress. | LitMetric

Physiological and molecular responses of juvenile shortnose sturgeon (Acipenser brevirostrum) to thermal stress.

Comp Biochem Physiol A Mol Integr Physiol

Department of Biological Sciences, University of New Brunswick, Saint John, New Brunswick, Canada. Electronic address:

Published: January 2017

The shortnose sturgeon (Acipenser brevirostrum LeSueur, 1818) is a vulnerable species that is found along the eastern coast of North America. Little is known about temperature tolerance in this species and with a rapidly changing global climate, it becomes increasingly important to define the thermal tolerance of this species to better predict population distribution. Using a modified critical thermal maximum test (CTMax), the objectives of this study were to determine the impact of heating rate (0.1, 0.2 and 0.25°Cmin) on the thermal tolerance, associated hematological responses, and oxygen consumption in juvenile sturgeon. In addition, transcripts associated with physiological stress and heat shock (i.e., heat shock proteins) were also measured. Heating rate did not alter the CTMax values of shortnose sturgeon. Neither heating rate nor thermal stress affected plasma sodium and chloride levels, nor the expression of transcripts that included catalase, glucocorticoid receptor, heat shock protein70 (hsp70), heat shock protein 90α (hsp90α) and cytochrome P450 1a (cyp1a). However, regardless of heating rate, thermal stress increased both plasma potassium and lactate concentrations. Glucose levels were increased at heating rates of 0.2 and 0.25°Cmin, but not at 0.1°Cmin. Overall, oxygen consumption rates increased with thermal stress, but the response patterns were not affected by heating rate. These data support the hypothesis that shortnose sturgeon can tolerate acute heat stress, as many physiological and molecular parameters measured here were non-responsive to the thermal stress.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.cbpa.2016.10.009DOI Listing

Publication Analysis

Top Keywords

thermal stress
20
heating rate
20
shortnose sturgeon
16
heat shock
16
physiological molecular
8
sturgeon acipenser
8
acipenser brevirostrum
8
thermal
8
tolerance species
8
thermal tolerance
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!