Semisynthetic flavonoid 7-O-galloylquercetin activates Nrf2 and induces Nrf2-dependent gene expression in RAW264.7 and Hepa1c1c7 cells.

Chem Biol Interact

Department of Medical Chemistry and Biochemistry, Faculty of Medicine and Dentistry, Palacký University, Hněvotínská 3, Olomouc 77515, Czech Republic; Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacký University, Hněvotínská 3, Olomouc 77515, Czech Republic. Electronic address:

Published: December 2016

The natural flavonoid quercetin is known to activate the transcription factor Nrf2, which regulates the expression of cytoprotective enzymes such as heme oxygenase-1 (HO-1) and NAD(P)H:quinone oxidoreductase 1 (NQO1). In this study, a novel semisynthetic flavonoid 7-O-galloylquercetin (or quercetin-7-gallate, 3) was prepared by direct galloylation of quercetin, and its effect on the Nrf2 pathway was examined. A luciferase reporter assay showed that 7-O-galloylquercetin, like quercetin, significantly activated transcription via the antioxidant response element in a stably transfected human AREc32 reporter cell line. In addition, 7-O-galloylquercetin caused the accumulation of Nrf2 and induced the expression of HO-1 at both the mRNA and protein levels in murine macrophage RAW264.7 cells. The induction of HO-1 by 7-O-galloylquercetin was significantly suppressed by N-acetyl-l-cysteine and SB203580, indicating the involvement of reactive oxygen species and p38 mitogen-activated protein kinase activity, respectively. HPLC/MS analyses also showed that 7-O-galloylquercetin was not degalloylated to quercetin, but it was conjugated with glucuronic acid and/or methylated in RAW264.7 cells. Furthermore, 7-O-galloylquercetin was found to increase the protein levels of Nrf2 and HO-1, and also the activity of NQO1 in murine hepatoma Hepa1c1c7 cells. Taken together, we conclude that 7-O-galloylquercetin increases Nrf2 activity and induces Nrf2-dependent gene expression in RAW264.7 and Hepa1c1c7 cells.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5148792PMC
http://dx.doi.org/10.1016/j.cbi.2016.10.015DOI Listing

Publication Analysis

Top Keywords

semisynthetic flavonoid
8
7-o-galloylquercetin
8
flavonoid 7-o-galloylquercetin
8
nrf2-dependent gene
8
gene expression
8
expression raw2647
8
protein levels
8
hepa1c1c7 cells
8
nrf2
6
7-o-galloylquercetin activates
4

Similar Publications

Exploring the Anticancer Potential of MonoHER (7-Mono-O-(β-Hydroxyethyl)-Rutoside): Mitochondrial-Dependent Apoptosis in HepG2 Cells.

Curr Issues Mol Biol

January 2025

The M-Lab, Department of Precision Medicine, GROW-Research Institute for Oncology and Reproduction, Maastricht University, 6200MD Maastricht, The Netherlands.

Background/aim: Flavonoids are a group of polyphenols, abundantly present in our diet. Although, based on their chemoprotective effects, intake of flavonoids is associated with a high anticancer potential as evidenced in in vitro and in vivo models, the molecular mechanism is still elusive. This study explores the antiproliferative and cytotoxic effects of the semi-synthetic flavonoid MonoHER (7-mono-O-(β-hydroxyethyl)-rutoside) in vitro on cancer cells.

View Article and Find Full Text PDF

New semisynthetic α-glucosidase inhibitor from a doubly-chemically engineered extract.

Nat Prod Bioprospect

January 2025

Consejo Nacional de Investigaciones Científicas y Técnicas, Suipacha 531, S2002LRK, Rosario, Argentina.

Chemically engineered extracts represent a promising source of new bioactive semi-synthetic molecules. Prepared through direct derivatization of natural extracts, they can include constituents enriched with elements and sub-structures that are less common in natural products compared to drugs. Fourteen such extracts were prepared through sequential reactions with hydrazine and a fluorinating reagent, and their α-glucosidase inhibition properties were compared.

View Article and Find Full Text PDF

This study explores the potential of polymethoxyflavones (PMFs) and polyacetylated flavones (PAFs) as novel analgesic and anti-inflammatory agents. Eight derivatives, isolated from Gardenia oudiepe bud exudate or semi-synthesized from commercial kaempferol, underwent evaluations in various in vivo, in vitro, and in silico models. Acetic acid-, formalin-induced pain, and hot-plate tests were conducted in mice (n = 6).

View Article and Find Full Text PDF

Tailored biosynthesis of diosmin through reconstitution of the flavonoid pathway in .

Front Plant Sci

October 2024

Metabolic Engineering Division, National Institute of Agricultural Sciences, Rural Development Administration, Jeonju, Republic of Korea.

The flavonoid diosmin (diosmetin 7--rutinoside) is used as a therapeutic agent for disorders of the blood vessels such as hemorrhoids and varicose veins. Diosmin is commercially produced using semi-synthetic methods involving the oxidation of hesperidin, the most abundant flavonoid in citrus fruits. However, this method produces byproducts that are toxic to the environment, and new sustainable methods to produce diosmin are required.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!