Inhibition of plasma lipid oxidation induced by peroxyl radicals, peroxynitrite, hypochlorite, 15-lipoxygenase, and singlet oxygen by clinical drugs.

Bioorg Med Chem Lett

Department of Molecular Gastroenterology and Hepatology, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan; National Institute of Advanced Industrial Science & Technology, Health Research Institute, Takamatsu 761-0395, Japan. Electronic address:

Published: November 2016

With increasing evidence showing the involvement of oxidative stress in the pathogenesis of various diseases, the effects of clinical drugs possessing antioxidant functions have received much attention. The unregulated oxidative modification of biological molecules leading to diseases is mediated by multiple oxidants including free radicals, peroxynitrite, hypochlorite, lipoxygenase, and singlet oxygen. The capacity of antioxidants to scavenge or quench oxidants depends on the nature of oxidants. In the present study, the antioxidant effects of several clinical drugs against plasma lipid oxidation induced by the aforementioned five kinds of oxidants were investigated from the production of lipid hydroperoxides, which have been implicated in the pathogenesis of various diseases. Troglitazone acted as a potent peroxyl radical scavenger, whereas probucol and edaravone showed only moderate reactivity and carvedilol, pentoxifylline, and ebselen did not act as radical scavenger. Probucol and edaravone suppressed plasma oxidation mediated by peroxynitrite and hypochlorite. Troglitazone and edaravone inhibited 15-lipoxygenase mediated plasma lipid oxidation, the IC being 20 and 34μM respectively. None of the drugs used in this study suppressed plasma lipid oxidation by singlet oxygen. This study shows that the antioxidant effects of drugs depend on the nature of oxidants and that antioxidants against multiple oxidants are required to cope with oxidative stress in vivo.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bmcl.2016.10.033DOI Listing

Publication Analysis

Top Keywords

plasma lipid
16
lipid oxidation
16
peroxynitrite hypochlorite
12
singlet oxygen
12
clinical drugs
12
oxidation induced
8
radicals peroxynitrite
8
oxidative stress
8
pathogenesis diseases
8
effects clinical
8

Similar Publications

Effect of plasma free fatty acids on lung function in male COPD patients.

Sci Rep

January 2025

Department of Internal Medicine, Afzalipour Faculty of Medicine, Afzalipour Hospital Research Center, Kerman University of Medical Sciences, Kerman, Iran.

Inflammation and oxidative stress play a pivotal role in COPD pathogenesis. Free fatty acids (FFA) as signaling molecules through a series of G-proteins coupled receptors, play an important role in regulation of the immune system and oxidative stress. For this reason, we decided to investigate the profile of FFA in the plasma in the COPD patients.

View Article and Find Full Text PDF

The active metabolite of vitamin A, all-trans-retinoic acid (atRA), is critical for maintenance of many cellular processes. Although the enzymes that can synthesize and clear atRA in mammals have been identified, their tissue and cell-type specific roles are still not fully established. Based on the plasma protein binding, tissue distribution and lipophilicity of atRA, atRA partitions extensively to lipid membranes and other neutral lipids in cells.

View Article and Find Full Text PDF

This study was aim to investigate the effects of lipoic acid (ALA) on performance, meat quality, serum biochemistry and antioxidant function of broilers under heat stress (HS). Two hundred1-day-old Cobb broilers were randomly divided into four treatment groups and each treatment consisted of 4 replicates of 10 broilers each. The treatment group adopts a 2 × 2 two-factor setting, which is divided into two diets (basic diet or 250 mg/kg ALA diet) and two temperatures (24 ± 1℃ or 33 ± 1℃).

View Article and Find Full Text PDF

Plasma proteomic technologies are rapidly evolving and of critical importance to the field of biomedical research. Here we report a technical evaluation of six notable plasma proteomic technologies - unenriched (Neat), Acid depletion, PreOmics ENRICHplus, Mag-Net, Seer Proteograph XT, Olink Explore HT. The methods were compared on proteomic depth, reproducibility, linearity, tolerance to lipid interference, and limit of detection/quantification.

View Article and Find Full Text PDF

Introduction: HIV-1 exploits dendritic cells (DCs) to spread throughout the body via specific recognition of gangliosides present on the viral envelope by the CD169/Siglec-1 membrane receptor. This interaction triggers the internalization of HIV-1 within a structure known as the sac-like compartment. While the mechanism underlying sac-like compartment formation remains elusive, prior research indicates that the process is clathrin-independent and cell membrane cholesterol-dependent and involves transient disruption of cortical actin.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!