Introduction: Metallic antibacterial nanoparticles have been shown to provide distinct antibacterial advantage and antibiofilm efficacy when applied in infected root canals. The purpose of this study was to evaluate the influence of incorporating zinc oxide nanoparticles (ZnO-Np) on the physicochemical properties of Grossman sealer.
Methods: Grossman sealer was prepared according to its original formula. Additionally, 4 experimental sealers were prepared by replacing the zinc oxide component of the powder with ZnO-Np (average size of 20 nm) in different amounts (25%, 50%, 75%, and 100%). Characterization of the setting time, flow, solubility, dimensional changes, and radiopacity were performed according to American National Standards Institute (ANSI)/American Dental Association (ADA) Specification 57. Scanning electron microscopic and energy-dispersive X-ray spectroscopic analyses were conducted to assess the ultrastructural and chemical characteristics of experimental sealers subjected to the solubility test. Statistical analyses were performed with analysis of variance and post hoc Tukey-Kramer tests with a significance level of 5%.
Results: A statistically significant difference in the setting time was observed among groups (P < .05), but only 25% ZnO-Np sealer complied with ANSI/ADA requirements. There was a significant difference in the flow characteristics between the control and 25% and 75% ZnO-Np experimental sealers (P < .05), but all sealers conformed to ANSI/ADA standardization; 25% ZnO-Np sealer showed significantly less solubility (1.81% ± 0.31%) and dimensional change (-0.34% ± 0.12%) than other sealers (P < .05). All sealers showed ultrastructural changes with increasing solubility.
Conclusions: ZnO-Np decreased the setting time and dimensional changes characteristic of Grossman sealer; 25% ZnO-Np improved the physicochemical properties of Grossman sealer in accordance with ANSI/ADA requirements.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.joen.2016.08.023 | DOI Listing |
Daru
December 2024
Department of Biochemistry, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
Objective(s): Some forms of breast cancer such as triple-negative phenotype, are serious challenge because of high metastatic cases, high mortality and resistance to conventional therapy motivated the search for alternative treatment approaches. Nanomaterials are promising candidates and suitable alternatives for improving tumor and cancer cell treatments.
Materials And Methods: Biosynthesis of ZnO NPs by help of Berberis integerrima fruit extract, has been done.
Sci Rep
December 2024
Qatar Environment and Energy Research Institute (QEERI), Hamad Bin Khalifa University (HBKU), Qatar Foundation, Doha, 34110, Qatar.
This study aims to modify raw zeolite with metal oxide nanocomposites to remove nickel (Ni) ions from synthetic wastewater. Novel zeolite-doped magnesium oxide (MgO), iron oxide (FeO), and zinc oxide (ZnO) nanocomposites were synthesized by hydrothermal-calcination methods. The novel zeolite-doped metal oxide nanocomposites were used as adsorbents to remove Ni (II) ions from synthetic wastewater.
View Article and Find Full Text PDFSci Rep
December 2024
School of Electrical Engineering, Kookmin University, Seoul, 02707, Republic of Korea.
This study optimizes V and ΔV in amorphous indium-gallium-zinc-oxide (a-IGZO) field-effect transistors (FETs) by examining the influence of both channel length (L) and Ga composition. It was observed that as the ratio of In: Ga: Zn changed from 1:1:1 to 0.307:0.
View Article and Find Full Text PDFSci Rep
December 2024
Department of Electrical and Computer Engineering, Ajou University, Suwon, 16499, Republic of Korea.
pH sensing technology is pivotal for monitoring aquatic ecosystems and diagnosing human health conditions. Indium-gallium-zinc oxide electrolyte-gated thin-film transistors (IGZO EGTFTs) are highly regarded as ion-sensing devices due to the pH-dependent surface chemistry of their sensing membranes. However, applying EGTFT-based pH sensors in complex biofluids containing diverse charged species poses challenges due to ion interference and inherently low sensitivity constrained by the Nernst limit.
View Article and Find Full Text PDFNanomaterials (Basel)
December 2024
College of Chemistry and Materials Science, Jinan University, Guangzhou 510632, China.
is one of the fungi that cause plant diseases. It damages plants by secreting large amounts of oxalic acid and cell wall-degrading enzymes. To meet this challenge, we designed a new pH/enzyme dual-responsive nanopesticide Pro@ZnO@Pectin (PZP).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!