A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Degradation of tetracycline by immobilized laccase and the proposed transformation pathway. | LitMetric

Degradation of tetracycline by immobilized laccase and the proposed transformation pathway.

J Hazard Mater

Fujian Key Laboratory of Marine Enzyme Engineering, Fuzhou University, Fujian 350116, China. Electronic address:

Published: January 2017

Magnetic cross-linked enzyme aggregates (M-CLEAs) were prepared for Cerrena laccase and used in antibiotic treatment. Of the seven antibiotics examined in this study, Cerrena laccase M-CLEAs were most effective in degradation of tetracycline (TC) and oxytetracycline (OTC), followed by ampicillin, sulfamethoxazole and erythromycin. The redox mediator ABTS was not able to improve efficiencies of degradation of TC and OTC. Cerrena laccase at 40U/mL eliminated 100μg/mL TC at pH 6 and 25°C in 48h in the absence of a redox mediator, with over 80% degradation occurring within the first 12h. Laccase treatment also significantly suppressed the antimicrobial activity of TC and OTC. Three TC transformation products, the levels of which initially increased and subsequently decreased during laccase treatment were identified by using LC-TOF MS. A mechanism of laccase-mediated TC oxidation was proposed based on the identified intermediates.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jhazmat.2016.10.019DOI Listing

Publication Analysis

Top Keywords

cerrena laccase
12
degradation tetracycline
8
redox mediator
8
laccase treatment
8
laccase
6
degradation
4
tetracycline immobilized
4
immobilized laccase
4
laccase proposed
4
proposed transformation
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!