Baicalein Promotes Angiogenesis and Odontoblastic Differentiation via the BMP and Wnt Pathways in Human Dental Pulp Cells.

Am J Chin Med

‡ Department of Oral and Maxillofacial Pathology and Research Center for Tooth and Periodontal Regeneration (MRC), School of Dentistry, Kyung Hee University, Seoul, Republic of Korea.

Published: January 2017

Baicalein is an active flavonoid extracted from the root of Scutellaria baicalensis that has anticancer and anti-inflammatory properties; its effects on osteoblastic and angiogenic potential are controversial. The aim of this study was to investigate the effects of baicalein on odontoblastic differentiation and angiogenesis and the underlying mechanism in human dental pulp cells (HDPCs). Baicalein (1-10[Formula: see text][Formula: see text]M) had no cytotoxic effects and promoted alkaline phosphatase (ALP) activity, mineralization assayed by Alizarin Red-S staining, and the mRNA expression of marker genes, in a concentration-dependent manner. In addition, baicalein upregulated angiogenic factors and increased in vitro capillary-like tube formation. Moreover, baicalein upregulated bone morphogenetic protein (BMP)-2 mRNA and phosphorylation of Smad 1/5/8 and Wnt ligand mRNA, glycogen synthase kinase-3, and nuclear [Formula: see text]-catenin. The odontogenic and angiogenic effects of baicalein were abolished by the BMP antagonist noggin and the Wnt/[Formula: see text]-catenin receptor antagonist DKK-1. These results demonstrate that baicalein promoted odontoblastic differentiation and angiogenesis of HDPCs by activating the BMP and Wnt/[Formula: see text]-catenin signal pathways. Our findings suggest that baicalein may contribute to dental pulp repair and regenerative endodontics.

Download full-text PDF

Source
http://dx.doi.org/10.1142/S0192415X16500816DOI Listing

Publication Analysis

Top Keywords

odontoblastic differentiation
12
dental pulp
12
baicalein
9
human dental
8
pulp cells
8
effects baicalein
8
differentiation angiogenesis
8
baicalein upregulated
8
wnt/[formula text]-catenin
8
baicalein promotes
4

Similar Publications

Membrana preformativa: Unveiling the unexplored facets of dental development.

J Oral Biol Craniofac Res

December 2024

Department of Oral Biology, Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Sciences, Chennai, 600077, India.

Aim: Odontogenesis is a complex and highly regulated biological process that involves a range of molecular mechanisms. Among these, Ki67 and Cyclin D1 are crucial cell cycle regulators that play pivotal roles in controlling cell proliferation during tooth development. This study aims to provide detailed insights into the expression patterns and functional significance of Ki67 and Cyclin D1 in tooth development.

View Article and Find Full Text PDF

Patients with diabetes mellitus (DM) have an increased risk of tooth decay caused by alterations in their tooth development and their oral environment, as well as a tendency to present with pulp infection due to compromised immune response. The present study analyzed the characteristic alterations in tooth development under DM conditions using incisors from type 2 diabetic mouse model (T2DM mice). In micro-CT analyses, T2DM mice showed delayed dentin and enamel formation.

View Article and Find Full Text PDF

Odontogenic exosomes simulating the developmental microenvironment promote complete regeneration of pulp-dentin complex in vivo.

J Adv Res

January 2025

Center of Stomatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China; School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China; Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan 430022, People's Republic of China. Electronic address:

Introduction: Establishing an optimized regenerative microenvironment for pulp-dentin complex engineering has become increasingly critical. Recently, exosomes have emerged as favorable biomimetic nanotherapeutic tools to simulate the developmental microenvironment and facilitate tissue regeneration.

Objectives: This study aimed to elucidate the multifaceted roles of exosomes from human dental pulp stem cells (DPSCs) that initiated odontogenic differentiation while sustaining mesenchymal stem cell (MSC) characteristics in odontogenesis, angiogenesis, and neurogenesis during pulp-dentin complex regeneration.

View Article and Find Full Text PDF

Tooth root development is a complex process essential for tooth function, yet the role of root dentin development in tooth morphogenesis is not fully understood. Optineurin (OPTN), linked to bone disorders like Paget's disease of bone (PDB), may affect tooth root development. In this study, we used single-cell sequencing of embryonic day 16.

View Article and Find Full Text PDF

Background: Regenerative endodontics requires an innovative delivery system to release antibiotics/growth factors in a sequential trend. This study focuses on developing/characterizing a thermoresponsive core-shell hydrogel designed for targeted drug delivery in endodontics.

Methods: The core-shell chitosan-alginate microparticles were prepared by electrospraying to deliver bone morphogenic protein-2 for 14 days and transforming growth factor-beta 1 (TGF-β1) for 7-14 days.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!