The controlled self-assembly of precise and well-defined photochemically and electrochemically active carbohydrate-coated nanoparticles offers the exciting prospect of biocompatible catalysts for energy storage/conversion and biolabeling applications. Here an aqueous nanoparticle system has been developed with a versatile outer layer for host-guest molecule encapsulation via β-cyclodextrin inclusion complexes. A β-cyclodextrin-modified polystyrene polymer was first obtained by copper nanopowder click chemistry. The glycopolymer enables self-assembly and controlled encapsulation of tetrazine-naphthalimide, as a model redox-active agent, into nanoparticles via nanoprecipitation. Cyclodextrin host-guest interactions permit encapsulation and internanoparticle cross-linking for the formation of fluorescent compound and clustered self-assemblies with chemically reversible electroactivity in aqueous solution. Light scattering experiments revealed stable particles with hydrodynamic diameters of 138 and 654 nm for nanoparticles prepared with tetrazine, of which 95% of the nanoparticles represent the smaller objects by number. Dynamic light scattering revealed differences as a function of preparation method in terms of size, 3-month stability, polydispersity, radius of gyration, and shape factor. Individual self-assemblies were visualized by atomic force microscopy and fluorescence microscopy and monitored in real-time by nanoparticle tracking analysis. UV-vis and fluorescence spectra provided insight into the optical properties and critical evidence for host-guest encapsulation as evidenced by solvachromatism and enhanced tetrazine uptake. Cyclic voltammetry was used to investigate the electrochemical properties and provided further support for encapsulation and an estimate of the tetrazine loading capacity in tandem with light scattering data.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.langmuir.6b03512DOI Listing

Publication Analysis

Top Keywords

light scattering
12
carbohydrate-coated nanoparticles
8
nanoparticles
5
encapsulation
5
redox-active carbohydrate-coated
4
nanoparticles self-assembly
4
self-assembly cyclodextrin-polystyrene
4
cyclodextrin-polystyrene glycopolymer
4
glycopolymer tetrazine-naphthalimide
4
tetrazine-naphthalimide controlled
4

Similar Publications

Real-time monitoring by interferometric light microscopy of phage suspensions for personalised phage therapy.

Sci Rep

December 2024

Pharmacy Department, Hospices Civils de Lyon, Hôpital E. Herriot, Plateforme FRIPHARM, 69437, Lyon, France.

Phage therapy uses viruses (phages) against antibiotic resistance. Tailoring treatments to specific patient strains requires stocks of various highly concentrated purified phages. It, therefore, faces challenges: titration duration and specificity to a phage/bacteria couple; purification affecting stability; and highly concentrated suspensions tending to aggregate.

View Article and Find Full Text PDF

Circular dichroism (CD) spectroscopy has emerged as a potent tool for probing chiral small-molecule ligand exchange on natively achiral quantum dots (QDs). In this study, we report a novel approach to identifying QD-biomolecule interactions by inducing chirality in CdS QDs using thermoresponsive elastin-like polypeptides (ELPs) engineered with C-terminal cysteine residues. Our method is based on a versatile two-step ligand exchange process starting from monodisperse oleate-capped QDs in nonpolar media and proceeding through an easily accessed achiral glycine-capped QD intermediate.

View Article and Find Full Text PDF

In this study, chitosan/curcumin (CS/Cur) and chitosan/papain (CS/Pa) nanoparticles were prepared and then characterized by Fourier transform infrared (FTIR), X-ray diffraction (XRD), and differential light scattering (DLS). Subsequently, release rate, porosity, swelling, degradability, anti-inflammatory, antioxidant, antibacterial, and cell viability tests were conducted to investigate and compare the healing potential of the nanoparticles for various types of wounds. The results of FTIR, XRD, and DLS indicated that the nanoparticles were manufactured correctly with a hydrodynamic diameter of 429 nm (CS/Cur) and 460 nm (CS/Pa), and zeta potential of 4.

View Article and Find Full Text PDF

Peony-shaped zinc oxide nanoflower synthesized via hydrothermal route exhibits promising anticancer and anti-amyloid activity.

BMC Pharmacol Toxicol

December 2024

Medical Bionanotechnology, Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Chettinad Health City, Kelambakkam, Tamilnadu, 603103, India.

Background: Cancer is the deadliest disease, and neurological disorders are also marked as slow progressive diseases, ultimately leading to death. Stopping two mouths with one morsel was the strategy that we used in this study.

Methods: We have synthesized peony-shaped zinc oxide nanoflowers (ZnO-NFs) and characterized them using various photophysical tools like UV-vis spectroscopy, zeta potential analysis, dynamic light scattering (DLS), FTIR, and scanning electron microscopy (SEM), and utilized these nanoflowers to monitor their anticancer and anti-amyloid activity.

View Article and Find Full Text PDF

Castration-resistant prostate cancer (CRPC) presents significant therapeutic challenges due to its aggressive nature and poor prognosis. Targeting Aurora-A kinase (AURKA) has shown promise in cancer treatment. This study investigates the efficacy of ART-T cell membrane-encapsulated AMS@AD (CM-AMS@AD) nanoparticles (NPs) in a photothermal-chemotherapy-immunotherapy combination for CRPC.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!