Achieving high open-circuit voltage (V) for tin-based perovskite solar cells is challenging. Here, we demonstrate that a ZnS interfacial layer can improve the V and photovoltaic performance of formamidinium tin iodide (FASnI) perovskite solar cells. The TiO-ZnS electron transporting layer (ETL) with cascade conduction band structure can effectively reduce the interfacial charge recombination and facilitate electron transfer. Our best-performing FASnI perovskite solar cell using the cascaded TiO-ZnS ETL has achieved a power conversion efficiency of 5.27%, with a higher V of 0.380 V, a short-circuit current density of 23.09 mA cm, and a fill factor of 60.01%. The cascade structure is further validated with a TiO-CdS ETL. Our results suggest a new approach for further improving the performance of tin-based perovskite solar cells with a higher V.

Download full-text PDF

Source
http://dx.doi.org/10.1021/jacs.6b08790DOI Listing

Publication Analysis

Top Keywords

perovskite solar
20
solar cells
16
formamidinium tin
8
tin iodide
8
tin-based perovskite
8
fasni perovskite
8
perovskite
5
solar
5
tio-zns cascade
4
cascade electron
4

Similar Publications

From Sunlight to Solutions: Closing the Loop on Halide Perovskites.

ACS Mater Au

January 2025

Institute for Advanced Materials and Manufacturing, Department of Materials Science and Engineering, Knoxville, Tennessee 37996, United States.

Halide perovskites (HPs) are emerging as key materials in the fight against global warming with well recognized applications, such as photovoltaics, and emergent opportunities, such as photocatalysis for methane removal and environmental remediation. These current and emergent applications are enabled by a unique combination of high absorption coefficients, tunable band gaps, and long carrier diffusion lengths, making them highly efficient for solar energy conversion. To address the challenge of discovery and optimization of HPs in huge chemical and compositional spaces of possible candidates, this perspective discusses a comprehensive strategy for screening HPs through automated high-throughput and combinatorial synthesis techniques.

View Article and Find Full Text PDF

The Aging Chemistry of Perovskite Precursor Solutions.

J Phys Chem Lett

January 2025

State Key Laboratory of Reliability and Intelligence of Electrical Equipment, School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300401, China.

A significant barrier to the commercialization of solution-processed perovskite solar cells (PSCs) is the chemical instability of the components in precursor solutions under ambient conditions. This instability leads to solution aging, which subsequently diminishes the quality and reproducibility of the resulting PSCs. Inspired by recent published works, which focused on the deprotonation of organic cations, the oxidation of iodide, and the formation of undesired byproducts, we here systematically summarize and provide an outlook on the research directions and perspectives of the origin of precursor solution aging and countermeasures, such as using stabilizing additives, redox shuttles, Schiff base reactions, and green solvents.

View Article and Find Full Text PDF

Mitigating the Efficiency Deficit in Single-Crystal Perovskite Solar Cells by Precise Control of the Growth Processes.

ACS Nano

January 2025

Ministry of Industry and Information Technology Key Lab of Micro-Nano Optoelectronic Information System, Guangdong Provincial Key Laboratory of Semiconductor Optoelectronic Materials and Intelligent Photonic Systems, Harbin Institute of Technology (Shenzhen), Shenzhen, Guangdong 518055, China.

The power conversion efficiencies (PCEs) of polycrystalline perovskite solar cells (PC-PSCs) have now reached a plateau after a decade of rapid development, leaving a distinct gap from their Shockley-Queisser limit. To continuously mitigate the PCE deficit, nonradiative carrier losses resulting from defects should be further optimized. Single-crystal perovskites are considered an ideal platform to study the efficiency limit of perovskite solar cells due to their intrinsically low defect density, as demonstrated in bulk single crystals.

View Article and Find Full Text PDF

Non-Volatile Multifunctional Dipole Molecules Enable 19.2% Efficiency for Printable Mesoscopic Perovskite Solar Cells.

Small

January 2025

School of Materials Science and Engineering, School of Optoelectronic Engineering, Engineering Research Center of Electronic Information Materials and Devices, Ministry of Education, Guilin University of Electronic Technology, 1st Jinji Road, Guilin, 541004, P. R. China.

Dipole molecules (DMs) show great potential in defect passivation for printable mesoscopic perovskite solar cells (p-MPSCs), although the crystallization process of p-MPSCs is more intricate and challenging than planar perovskite solar cells. In this work, a series of non-volatile multifunctional DMs are employed as additives to enhance the crystallization of perovskites and improve both the power conversion efficiency (PCE) and stability of the devices. This enhancement is achieved by regulating the side groups of benzoic acid molecules with the electron-donating groups such as guanidine (─NH─C(═NH)─NH), amino (─NH) and formamidine (─C(═NH)─NH).

View Article and Find Full Text PDF

Strategic Integration of Machine Learning in the Design of Excellent Hybrid Perovskite Solar Cells.

J Phys Chem Lett

January 2025

College of Chemistry and Materials Science, Hebei University, Baoding 071002, P. R. China.

The photoelectric conversion efficiency (PCE) of perovskites remains beneath the Shockley-Queisser limit, despite its significant potential for solar cell applications. The present focus is on investigating potential multicomponent perovskite candidates, particularly on the application of machine learning to expedite band gap screening. To efficiently identify high-performance perovskites, we utilized a data set of 1346 hybrid organic-inorganic perovskites and employed 11 machine learning models, including decision trees, convolutional neural networks (CNNs), and graph neural networks (GNNs).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!