Filamin A interacting protein 1-like (FILIP1L) is an inhibitor of the canonical WNT pathway. WNT/β-catenin signaling and its downstream pathway, epithelial-to-mesenchymal transition (EMT), play a key role in ovarian cancer metastasis and chemoresistance. To study the clinical implications of FILIP1L in regulating the WNT/β-catenin pathway, the expression of FILIP1L, β-catenin, SNAIL and SLUG was analyzed by immunohistochemistry on tissue microarrays of 369 ovarian samples ranging from normal to metastatic. In addition, the results were validated in mouse model and in vitro cell culture. In the present study, we demonstrated that FILIP1L expression was inversely correlated with poor prognosis, stage and chemoresistance in ovarian cancer. Notably, low FILIP1L expression was independent negative prognostic factor with respect to overall and disease-free survival. FILIP1L inhibited peritoneal metastases in orthotopic mouse model. FILIP1L knockdown induced chemoresistance in ovarian cancer cells and this phenotype was rescued by simultaneous knockdown of FILIP1L and SLUG, an EMT activator. We also demonstrated that FILIP1L regulates β-catenin degradation. FILIP1L co-localizes with phospho-β-catenin and increases phospho-β-catenin at the centrosomes, destined for proteosomal degradation. Finally, we showed that FILIP1L regulates EMT. Overall, these findings suggest that FILIP1L promotes β-catenin degradation and suppresses EMT, thereby inhibiting metastases and chemoresistance. Our study provides the first clinical relevance of FILIP1L in human cancer, and suggests that FILIP1L may be a novel prognostic marker for chemotherapy in ovarian cancer patients. Further, the modulation of FILIP1L expression may have the potential to be a target for cancer therapy.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5340232 | PMC |
http://dx.doi.org/10.18632/oncotarget.12784 | DOI Listing |
Gynecol Oncol
January 2025
Departments of Internal Medicine and Immunology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, United States of America; Department of Medicine, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, United States of America.
Purpose: We observed that the tumor microenvironment (TME) in metastatic epithelial ovarian cancer (EOC) and in other solid tumors can reprogram normal neutrophils to acquire a complement-dependent suppressor phenotype characterized by inhibition of stimulated T cell activation. This study aims to evaluate whether serum markers of neutrophil activation and complement at diagnosis of EOC would be associated with clinical outcomes.
Experimental Design: We conducted a two-center prospective study of patients with newly diagnosed EOC (N = 188).
Gynecol Oncol
January 2025
GOG Foundation, Florida Cancer Specialists and Research Institute, West Palm Beach, FL 33401, United States of America. Electronic address:
Objective: Therapeutic interventions for epithelial ovarian cancer (EOC) have increased greatly over the last decade but improvements outside of biomarker selected therapies have been limited. There remains a pressing need for more effective treatment options that can prolong survival and enhance the quality of life of patients with EOC. In contrast to the significant benefits of immunotherapy with immune checkpoint inhibitors (CPI) seen in many solid tumors, initial experience in EOC suggests limited efficacy of CPIs monotherapy.
View Article and Find Full Text PDFB7-H3 (CD276), a member of the B7-family of immune checkpoint proteins, has been shown to have immunological and non-immunological effects promoting tumorigenesis [1, 2] and expression correlates with poor prognosis for many solid tumors, including cervical, ovarian and breast cancers [3-6]. We recently identified a tumor-cell autochthonous tumorigenic role for dimerization of the 4Ig isoform of B7-H3 (4Ig-B7-H3) [7], where 4Ig-B7-H3 dimerization activated tumor-intrinsic cellular proliferation and tumorigenesis pathways, providing a novel opportunity for therapeutic intervention. Herein, a live cell split-luciferase complementation strategy was used to visualize 4Ig-B7-H3 homodimerization in a high-throughput small molecule screen (HTS) to identify modulators of this protein-protein interaction (PPI).
View Article and Find Full Text PDFLiposomal doxorubicin (Dox), a treatment option for recurrent ovarian cancer, often suffers from suboptimal biodistribution and efficacy, which might be addressed with precision drug delivery systems. Here, we introduce a catheter-based endoscopic probe designed for multispectral, quantitative monitoring of light-triggered drug release. This tool utilizes red-light photosensitive porphyrin-phospholipid (PoP), which is encapsulated in liposome bilayers to enhance targeted drug delivery.
View Article and Find Full Text PDFFront Immunol
January 2025
Leeds Institute of Medical Research, School of Medicine, University of Leeds, St. James University Hospital, Leeds, United Kingdom.
Background: There has been limited success of cancer immunotherapies in the treatment of ovarian cancer (OvCa) to date, largely due to the immunosuppressive tumour microenvironment (TME). Tumour-associated macrophages (TAMs) are a major component of both the primary tumour and malignant ascites, promoting tumour growth, angiogenesis, metastasis, chemotherapy resistance and immunosuppression. Differential microRNA (miRNA) profiles have been implicated in the plasticity of TAMs.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!