Capillary Bridging as a Tool for Assembling Discrete Clusters of Patchy Particles.

J Am Chem Soc

Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina 27695, United States.

Published: November 2016

Janus and patchy particles are emerging as models for studying complex directed assembly patterns and as precursors of new structured materials and composites. Here we show how lipid-induced capillary bridging could serve as a new and nonconventional method of assembling patchy particles into ordered structures. Iron oxide surface patches on latex microspheres were selectively wetted with liquid lipid, driving the particle assembly into two- and three-dimensional clusters via interparticle capillary bridge formation. The liquid phase of the bridges allows local reorganization of the particles within the clusters and assists in forming true equilibrium configurations. The temperature-driven fluid-to-gel and gel-to-fluid phase transitions of the fatty acids within the bridge act as a thermal switch for cluster assembly and disassembly. By complementing the experiments with Monte Carlo simulations, we show that the equilibrium cluster morphology is determined by the patch characteristics, namely, their size, number, and shape. This study demonstrates the ability of capillary bridging as a versatile tool to assemble thermoresponsive clusters and aggregates. This method of binding particles is simple, robust, and generic and can be extended further to assemble particles with nonspherical shapes and complex surface chemistries enabling the formation of sophisticated colloidal molecules.

Download full-text PDF

Source
http://dx.doi.org/10.1021/jacs.6b08017DOI Listing

Publication Analysis

Top Keywords

capillary bridging
12
patchy particles
12
particles
6
capillary
4
bridging tool
4
tool assembling
4
assembling discrete
4
clusters
4
discrete clusters
4
clusters patchy
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!