Inhibition of protein kinases using ATP-competitive compounds is an important strategy in drug discovery. In contrast, the allosteric regulation of kinases through the disruption of protein-protein interactions has not been widely adopted, despite the potential for selective targeting. Aurora-A kinase regulates mitotic entry and mitotic spindle assembly and is a promising target for anticancer therapy. The microtubule-associated protein TPX2 activates Aurora-A through binding to two sites. Aurora-A recognition is mediated by two motifs within the first 43 residues of TPX2, connected by a flexible linker. To characterize the contributions of these three structural elements, we prepared a series of TPX2 proteomimetics and investigated their binding affinity for Aurora-A using isothermal titration calorimetry. A novel stapled TPX2 peptide was developed that has improved binding affinity for Aurora-A and mimics the function of TPX2 in activating Aurora-A's autophosphorylation. We conclude that the helical region of TPX2 folds upon binding Aurora-A, and that stabilization of this helix does not compromise Aurora-A activation. This study demonstrates that the preparation of these proteomimetics using modern synthesis methods is feasible and their biochemical evaluation demonstrates the power of proteomimetics as tool compounds for investigating PPIs involving intrinsically disordered regions of proteins.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acschembio.6b00727 | DOI Listing |
Peptidomimetic design for non-canonical interfaces is less well established than for α-helix and β-strand mediated protein-protein interactions. Using the TACC3/Aurora-A kinase interaction as a model, we developed a series of constrained TACC3 peptide variants with 10-fold increased binding potencies ( ) towards Aurora-A in comparison to the parent peptide. High-affinity is achieved in part by restricting the accessible conformational ensemble of the peptide leading to a more favourable entropy of binding.
View Article and Find Full Text PDFRSC Med Chem
November 2024
School of Pharmaceutical Science, Shanxi Medical University Taiyuan 030001 China
The mitotic kinase Aurora A, a pivotal regulator of the cell cycle, is overexpressed in various cancers and has emerged as one of the most promising targets for anticancer drug discovery. However, the lack of specificity and potential toxicity have impeded clinical trials involving orthosteric inhibitors. In this study, allosteric sites of Aurora A were predicted using the AlloReverse web server.
View Article and Find Full Text PDFJ Med Chem
September 2024
Department of Biochemistry, University of Cambridge, Cambridge CB2 1GA, U.K.
Aurora A kinase, a cell division regulator, is frequently overexpressed in various cancers, provoking genome instability and resistance to antimitotic chemotherapy. Localization and enzymatic activity of Aurora A are regulated by its interaction with the spindle assembly factor TPX2. We have used fragment-based, structure-guided lead discovery to develop small molecule inhibitors of the Aurora A-TPX2 protein-protein interaction (PPI).
View Article and Find Full Text PDFJ Chem Inf Model
June 2024
Center for Bioinformatics, Simulation and Modeling (CBSM), Faculty of Engineering, Universidad de Talca, 1 Poniente 1141, 3466706 Talca, Chile.
The accurate experimental estimation of protein-ligand systems' residence time (τ) has become very relevant in drug design projects due to its importance in the last stages of refinement of the drug's pharmacodynamics and pharmacokinetics. It is now well-known that it is not sufficient to estimate the affinity of a protein-drug complex in the thermodynamic equilibrium process in experiments (closed systems), where the concentrations of the drug and protein remain constant. On the contrary, it is mandatory to consider the conformational dynamics of the system in terms of the binding and unbinding processes between protein and drugs in experiments (open systems), where their concentrations are in constant flux.
View Article and Find Full Text PDFFront Pharmacol
May 2024
Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, United States.
Prostate cancer (PC) is an aggressive cancer that can progress rapidly and eventually become castrate-resistant prostate cancer (CRPC). Stage IV metastatic castrate-resistant prostate cancer (mCRPC) is an incurable late-stage cancer type with a low 5-year overall survival rate. Targeted therapeutics such as antibody-drug conjugates (ADCs) based on high-affinity monoclonal antibodies and potent drugs conjugated via smart linkers are being developed for PC management.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!